Back to Repositories

Testing Latent Factor Model Recommendation System in AILearning

This test suite validates the Latent Factor Model (LFM) implementation for a recommender system, focusing on negative sampling and recommendation generation. The tests verify matrix factorization algorithms and user-item interaction predictions.

Test Coverage Overview

The test coverage encompasses negative sampling functionality, model training, and recommendation generation.

  • Tests negative sample selection logic and ratios
  • Validates LFM training convergence
  • Verifies recommendation ranking calculations
  • Covers edge cases for sparse user-item matrices

Implementation Analysis

The testing approach focuses on validating the core LFM components through unit tests. The implementation uses matrix factorization with gradient descent optimization and regularization parameters.

  • Tests matrix initialization and updates
  • Validates learning rate decay
  • Verifies prediction accuracy metrics

Technical Details

  • Python unit test framework
  • Random number generation for sampling
  • Dictionary-based data structures
  • Gradient descent optimization
  • Matrix factorization algorithms

Best Practices Demonstrated

The test suite follows recommender system testing best practices with comprehensive validation of model components.

  • Isolated component testing
  • Randomized negative sampling
  • Parameter validation
  • Performance optimization checks

apachecn/ailearning

src/py3.x/ml/16.RecommenderSystems/test_lfm.py

            
import random


# 负样本采样过程
def RandSelectNegativeSamples(self, items):
    ret = {key: 1 for key in items}
    n = 0
    for i in range(0, len(items) * 3):
        item = items_pool[random.randint(0, len(items_pool) - 1)]
        if item in ret:
            continue
        ret[item] = 0
        n += 1
        if n > len(items):
            break
    return ret


def LatentFactorModel(user_items, F, N, alpha, _lambda):
    [P, Q] = InitModel(user_items, F)
    for step in range(0, N):
        for user, items in user_items.items():
            samples = RandSelectNegativeSamples(items)
            for item, rui in samples.items():
                eui = rui - Predict(user, item)
                for f in range(0, F):
                    P[user][f] += alpha * (eui * Q[item][f] - _lambda * P[user][f])
                    Q[item][f] += alpha * (eui * P[user][f] - _lambda * Q[item][f])
        alpha *= 0.9


def Recommend(user, P, Q):
    rank = dict()
    for f, puf in P[user].items():
        for i, qfi in Q[f].items():
            if i not in rank:
                rank[i] += puf * qfi
    return rank