Testing Latent Factor Model Recommendation System in AILearning
This test suite validates the Latent Factor Model (LFM) implementation for a recommender system, focusing on negative sampling and recommendation generation. The tests verify matrix factorization algorithms and user-item interaction predictions.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
apachecn/ailearning
src/py3.x/ml/16.RecommenderSystems/test_lfm.py
import random
# 负样本采样过程
def RandSelectNegativeSamples(self, items):
ret = {key: 1 for key in items}
n = 0
for i in range(0, len(items) * 3):
item = items_pool[random.randint(0, len(items_pool) - 1)]
if item in ret:
continue
ret[item] = 0
n += 1
if n > len(items):
break
return ret
def LatentFactorModel(user_items, F, N, alpha, _lambda):
[P, Q] = InitModel(user_items, F)
for step in range(0, N):
for user, items in user_items.items():
samples = RandSelectNegativeSamples(items)
for item, rui in samples.items():
eui = rui - Predict(user, item)
for f in range(0, F):
P[user][f] += alpha * (eui * Q[item][f] - _lambda * P[user][f])
Q[item][f] += alpha * (eui * P[user][f] - _lambda * Q[item][f])
alpha *= 0.9
def Recommend(user, P, Q):
rank = dict()
for f, puf in P[user].items():
for i, qfi in Q[f].items():
if i not in rank:
rank[i] += puf * qfi
return rank