Validating Vehicle Dynamics Model Testing in OpenPilot Control System
This test suite validates the VehicleModel class implementation in OpenPilot’s control system, focusing on vehicle dynamics calculations and state space modeling. The tests verify yaw rate calculations, state space solutions, and simulation accuracy for various driving conditions.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
commaai/openpilot
selfdrive/controls/lib/tests/test_vehicle_model.py
import pytest
import math
import numpy as np
from opendbc.car.honda.interface import CarInterface
from opendbc.car.honda.values import CAR
from openpilot.selfdrive.controls.lib.vehicle_model import VehicleModel, dyn_ss_sol, create_dyn_state_matrices
class TestVehicleModel:
def setup_method(self):
CP = CarInterface.get_non_essential_params(CAR.HONDA_CIVIC)
self.VM = VehicleModel(CP)
def test_round_trip_yaw_rate(self):
# TODO: fix VM to work at zero speed
for u in np.linspace(1, 30, num=10):
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
yr = self.VM.yaw_rate(sa, u, roll)
new_sa = self.VM.get_steer_from_yaw_rate(yr, u, roll)
assert sa == pytest.approx(new_sa)
def test_dyn_ss_sol_against_yaw_rate(self):
"""Verify that the yaw_rate helper function matches the results
from the state space model."""
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
for u in np.linspace(1, 30, num=10):
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
# Compute yaw rate based on state space model
_, yr1 = dyn_ss_sol(sa, u, roll, self.VM)
# Compute yaw rate using direct computations
yr2 = self.VM.yaw_rate(sa, u, roll)
assert float(yr1[0]) == pytest.approx(yr2)
def test_syn_ss_sol_simulate(self):
"""Verifies that dyn_ss_sol matches a simulation"""
for roll in np.linspace(math.radians(-20), math.radians(20), num=11):
for u in np.linspace(1, 30, num=10):
A, B = create_dyn_state_matrices(u, self.VM)
# Convert to discrete time system
dt = 0.01
top = np.hstack((A, B))
full = np.vstack((top, np.zeros_like(top))) * dt
Md = sum([np.linalg.matrix_power(full, k) / math.factorial(k) for k in range(25)])
Ad = Md[:A.shape[0], :A.shape[1]]
Bd = Md[:A.shape[0], A.shape[1]:]
for sa in np.linspace(math.radians(-20), math.radians(20), num=11):
inp = np.array([[sa], [roll]])
# Simulate for 1 second
x1 = np.zeros((2, 1))
for _ in range(100):
x1 = Ad @ x1 + Bd @ inp
# Compute steady state solution directly
x2 = dyn_ss_sol(sa, u, roll, self.VM)
np.testing.assert_almost_equal(x1, x2, decimal=3)