Testing Driver Monitoring System Performance Patterns in OpenPilot
This test suite examines performance lag and memory issues in the driver monitoring system of the OpenPilot project. It specifically focuses on buffer allocation and YUV image processing performance, simulating real-world conditions that could trigger system delays.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
commaai/openpilot
selfdrive/modeld/tests/dmon_lag/repro.cc
// clang++ -O2 repro.cc && ./a.out
#include <sched.h>
#include <sys/types.h>
#include <unistd.h>
#include <cstdint>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <ctime>
static inline double millis_since_boot() {
struct timespec t;
clock_gettime(CLOCK_BOOTTIME, &t);
return t.tv_sec * 1000.0 + t.tv_nsec * 1e-6;
}
#define MODEL_WIDTH 320
#define MODEL_HEIGHT 640
// null function still breaks it
#define input_lambda(x) x
// this is copied from models/dmonitoring.cc, and is the code that triggers the issue
void inner(uint8_t *resized_buf, float *net_input_buf) {
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
// one shot conversion, O(n) anyway
// yuvframe2tensor, normalize
for (int r = 0; r < MODEL_HEIGHT/2; r++) {
for (int c = 0; c < MODEL_WIDTH/2; c++) {
// Y_ul
net_input_buf[(c*MODEL_HEIGHT/2) + r] = input_lambda(resized_buf[(2*r*resized_width) + (2*c)]);
// Y_ur
net_input_buf[(c*MODEL_HEIGHT/2) + r + (2*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width) + (2*c+1)]);
// Y_dl
net_input_buf[(c*MODEL_HEIGHT/2) + r + ((MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c)]);
// Y_dr
net_input_buf[(c*MODEL_HEIGHT/2) + r + (3*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(2*r*resized_width+1) + (2*c+1)]);
// U
net_input_buf[(c*MODEL_HEIGHT/2) + r + (4*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + (r*resized_width/2) + c]);
// V
net_input_buf[(c*MODEL_HEIGHT/2) + r + (5*(MODEL_WIDTH/2)*(MODEL_HEIGHT/2))] = input_lambda(resized_buf[(resized_width*resized_height) + ((resized_width/2)*(resized_height/2)) + (r*resized_width/2) + c]);
}
}
}
float trial() {
int resized_width = MODEL_WIDTH;
int resized_height = MODEL_HEIGHT;
int yuv_buf_len = (MODEL_WIDTH/2) * (MODEL_HEIGHT/2) * 6; // Y|u|v -> y|y|y|y|u|v
// allocate the buffers
uint8_t *resized_buf = (uint8_t*)malloc(resized_width*resized_height*3/2);
float *net_input_buf = (float*)malloc(yuv_buf_len*sizeof(float));
printf("allocate -- %p 0x%x -- %p 0x%lx
", resized_buf, resized_width*resized_height*3/2, net_input_buf, yuv_buf_len*sizeof(float));
// test for bad buffers
static int CNT = 20;
float avg = 0.0;
for (int i = 0; i < CNT; i++) {
double s4 = millis_since_boot();
inner(resized_buf, net_input_buf);
double s5 = millis_since_boot();
avg += s5-s4;
}
avg /= CNT;
// once it's bad, it's reliably bad
if (avg > 10) {
printf("HIT %f
", avg);
printf("BAD
");
for (int i = 0; i < 200; i++) {
double s4 = millis_since_boot();
inner(resized_buf, net_input_buf);
double s5 = millis_since_boot();
printf("%.2f ", s5-s4);
}
printf("
");
exit(0);
}
// don't free so we get a different buffer each time
//free(resized_buf);
//free(net_input_buf);
return avg;
}
int main() {
while (true) {
float ret = trial();
printf("got %f
", ret);
}
}