Testing Process Fuzzing Implementation in OpenPilot
This test suite implements fuzzy testing for the OpenPilot autonomous driving system’s process components. It focuses on validating process behavior under randomized input data to uncover edge cases and potential failure modes.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
commaai/openpilot
selfdrive/test/process_replay/test_fuzzy.py
import copy
import os
from hypothesis import given, HealthCheck, Phase, settings
import hypothesis.strategies as st
from parameterized import parameterized
from cereal import log
from opendbc.car.toyota.values import CAR as TOYOTA
from openpilot.selfdrive.test.fuzzy_generation import FuzzyGenerator
import openpilot.selfdrive.test.process_replay.process_replay as pr
# These processes currently fail because of unrealistic data breaking assumptions
# that openpilot makes causing error with NaN, inf, int size, array indexing ...
# TODO: Make each one testable
NOT_TESTED = ['selfdrived', 'controlsd', 'card', 'plannerd', 'calibrationd', 'dmonitoringd', 'paramsd', 'dmonitoringmodeld', 'modeld']
TEST_CASES = [(cfg.proc_name, copy.deepcopy(cfg)) for cfg in pr.CONFIGS if cfg.proc_name not in NOT_TESTED]
MAX_EXAMPLES = int(os.environ.get("MAX_EXAMPLES", "10"))
class TestFuzzProcesses:
# TODO: make this faster and increase examples
@parameterized.expand(TEST_CASES)
@given(st.data())
@settings(phases=[Phase.generate, Phase.target], max_examples=MAX_EXAMPLES, deadline=1000,
suppress_health_check=[HealthCheck.too_slow, HealthCheck.data_too_large])
def test_fuzz_process(self, proc_name, cfg, data):
msgs = FuzzyGenerator.get_random_event_msg(data.draw, events=cfg.pubs, real_floats=True)
lr = [log.Event.new_message(**m).as_reader() for m in msgs]
cfg.timeout = 5
pr.replay_process(cfg, lr, fingerprint=TOYOTA.TOYOTA_COROLLA_TSS2, disable_progress=True)