Validating OpenCL Image Processing Pipeline in openpilot
This test suite validates the image processing pipeline in the openpilot system, focusing on raw camera frame processing and YUV/RGB conversion functionality. It ensures consistent image processing across different hardware configurations and verifies the output against known reference hashes.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
commaai/openpilot
selfdrive/test/process_replay/test_imgproc.py
import os
import numpy as np
import hashlib
import pyopencl as cl # install with `PYOPENCL_CL_PRETEND_VERSION=2.0 pip install pyopencl`
from openpilot.system.hardware import PC, TICI
from openpilot.common.basedir import BASEDIR
from openpilot.common.transformations.camera import DEVICE_CAMERAS
from openpilot.system.camerad.snapshot.snapshot import yuv_to_rgb
from openpilot.tools.lib.logreader import LogReader
# TODO: check all sensors
TEST_ROUTE = "8345e3b82948d454|2022-05-04--13-45-33/0"
cam = DEVICE_CAMERAS[("tici", "ar0231")]
FRAME_WIDTH, FRAME_HEIGHT = (cam.dcam.width, cam.dcam.height)
FRAME_STRIDE = FRAME_WIDTH * 12 // 8 + 4
UV_WIDTH = FRAME_WIDTH // 2
UV_HEIGHT = FRAME_HEIGHT // 2
UV_SIZE = UV_WIDTH * UV_HEIGHT
def init_kernels(frame_offset=0):
ctx = cl.create_some_context(interactive=False)
with open(os.path.join(BASEDIR, 'system/camerad/cameras/process_raw.cl')) as f:
build_args = f' -cl-fast-relaxed-math -cl-denorms-are-zero -cl-single-precision-constant -I{BASEDIR}/system/camerad/sensors ' + \
f' -DFRAME_WIDTH={FRAME_WIDTH} -DFRAME_HEIGHT={FRAME_WIDTH} -DFRAME_STRIDE={FRAME_STRIDE} -DFRAME_OFFSET={frame_offset} ' + \
f' -DRGB_WIDTH={FRAME_WIDTH} -DRGB_HEIGHT={FRAME_HEIGHT} -DYUV_STRIDE={FRAME_WIDTH} -DUV_OFFSET={FRAME_WIDTH*FRAME_HEIGHT}' + \
' -DSENSOR_ID=1 -DVIGNETTING=0 '
if PC:
build_args += ' -DHALF_AS_FLOAT=1 -cl-std=CL2.0'
imgproc_prg = cl.Program(ctx, f.read()).build(options=build_args)
return ctx, imgproc_prg
def proc_frame(ctx, imgproc_prg, data, rgb=False):
q = cl.CommandQueue(ctx)
yuv_buff = np.empty(FRAME_WIDTH * FRAME_HEIGHT + UV_SIZE * 2, dtype=np.uint8)
cam_g = cl.Buffer(ctx, cl.mem_flags.READ_ONLY | cl.mem_flags.COPY_HOST_PTR, hostbuf=data)
yuv_g = cl.Buffer(ctx, cl.mem_flags.WRITE_ONLY, FRAME_WIDTH * FRAME_HEIGHT + UV_SIZE * 2)
krn = imgproc_prg.process_raw
krn.set_scalar_arg_dtypes([None, None, np.int32])
local_worksize = (20, 20) if TICI else (4, 4)
ev1 = krn(q, (FRAME_WIDTH//2, FRAME_HEIGHT//2), local_worksize, cam_g, yuv_g, 1)
cl.enqueue_copy(q, yuv_buff, yuv_g, wait_for=[ev1]).wait()
cl.enqueue_barrier(q)
y = yuv_buff[:FRAME_WIDTH*FRAME_HEIGHT].reshape((FRAME_HEIGHT, FRAME_WIDTH))
u = yuv_buff[FRAME_WIDTH*FRAME_HEIGHT::2].reshape((UV_HEIGHT, UV_WIDTH))
v = yuv_buff[FRAME_WIDTH*FRAME_HEIGHT+1::2].reshape((UV_HEIGHT, UV_WIDTH))
if rgb:
return yuv_to_rgb(y, u, v)
else:
return y, u, v
def imgproc_replay(lr):
ctx, imgproc_prg = init_kernels()
frames = []
for m in lr:
if m.which() == 'roadCameraState':
cs = m.roadCameraState
if cs.image:
data = np.frombuffer(cs.image, dtype=np.uint8)
img = proc_frame(ctx, imgproc_prg, data)
frames.append(img)
return frames
if __name__ == "__main__":
# load logs
lr = list(LogReader(TEST_ROUTE))
# run replay
out_frames = imgproc_replay(lr)
all_pix = np.concatenate([np.concatenate([d.flatten() for d in f]) for f in out_frames])
pix_hash = hashlib.sha1(all_pix).hexdigest()
with open('imgproc_replay_ref_hash') as f:
ref_hash = f.read()
if pix_hash != ref_hash:
print("result changed! please check kernel")
print(f"ref: {ref_hash}")
print(f"new: {pix_hash}")
else:
print("test passed")