Back to Repositories

Testing SpeedySpeech TTS Training Implementation in Coqui-AI/TTS

This test suite validates the training and inference functionality of the SpeedySpeech TTS model implementation in the Coqui-AI/TTS repository. It covers model configuration, training initialization, checkpointing, and inference capabilities.

Test Coverage Overview

The test suite provides comprehensive coverage of SpeedySpeech model functionality:
  • Model configuration and initialization
  • Training pipeline validation
  • Checkpoint management and restoration
  • Inference pipeline verification
  • Configuration persistence and loading

Implementation Analysis

The testing approach implements a full training-inference cycle validation. It utilizes CLI commands to simulate real-world usage patterns, validates configuration persistence, and verifies model checkpoint management. The test leverages the LJSpeech dataset format for training data.

Technical Details

  • Uses CUDA device management for GPU testing
  • Implements file system operations for model artifacts
  • Validates JSON configuration persistence
  • Employs CLI command execution for training and inference
  • Utilizes checkpoint management utilities

Best Practices Demonstrated

The test exemplifies robust testing practices including:
  • Environment isolation and cleanup
  • Comprehensive configuration validation
  • End-to-end workflow testing
  • Resource management and cleanup
  • Explicit test data management

coqui-ai/tts

tests/tts_tests/test_speedy_speech_train.py

            
import glob
import json
import os
import shutil

from trainer import get_last_checkpoint

from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig

config_path = os.path.join(get_tests_output_path(), "test_speedy_speech_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")


config = SpeedySpeechConfig(
    batch_size=8,
    eval_batch_size=8,
    num_loader_workers=0,
    num_eval_loader_workers=0,
    text_cleaner="english_cleaners",
    use_phonemes=True,
    phoneme_language="en-us",
    phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1,
    print_step=1,
    print_eval=True,
    test_sentences=[
        "Be a voice, not an echo.",
    ],
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = (
    f"CUDA_VISIBLE_DEVICES='{get_device_id()}'  python TTS/bin/train_tts.py --config_path {config_path}  "
    f"--coqpit.output_path {output_path} "
    "--coqpit.datasets.0.formatter ljspeech "
    "--coqpit.datasets.0.meta_file_train metadata.csv "
    "--coqpit.datasets.0.meta_file_val metadata.csv "
    "--coqpit.datasets.0.path tests/data/ljspeech "
    "--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
    "--coqpit.test_delay_epochs 0"
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)

# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")

# Check integrity of the config
with open(continue_config_path, "r", encoding="utf-8") as f:
    config_loaded = json.load(f)
assert config_loaded["characters"] is not None
assert config_loaded["output_path"] in continue_path
assert config_loaded["test_delay_epochs"] == 0

# Load the model and run inference
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example for it.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)

# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)
shutil.rmtree(continue_path)