Back to Repositories

Testing Tacotron2 Training and Inference Pipeline in Coqui-AI TTS

This test suite validates the training and inference functionality of the Tacotron2 model in the Coqui-AI TTS framework. It covers model configuration, training initialization, checkpointing, and inference capabilities through a comprehensive set of unit tests.

Test Coverage Overview

The test suite provides comprehensive coverage of the Tacotron2 model training pipeline.

Key areas tested include:
  • Model configuration setup and validation
  • Training initialization and execution
  • Checkpoint management and model restoration
  • Inference pipeline verification
  • Configuration persistence and loading

Implementation Analysis

The testing approach implements a full training-inference cycle validation. It utilizes a minimal Tacotron2 configuration with reduced epochs and batch sizes for efficient testing, while maintaining coverage of critical functionality.

Notable patterns include:
  • Dynamic device selection for CUDA compatibility
  • File path management for artifacts
  • CLI command execution validation
  • Checkpoint integrity verification

Technical Details

Testing infrastructure includes:
  • Python unit testing framework
  • CUDA device management
  • File system operations for artifact management
  • JSON configuration handling
  • CLI command execution utilities
  • LJSpeech dataset integration
  • Checkpoint management utilities

Best Practices Demonstrated

The test suite exemplifies several testing best practices in ML model validation.

Notable practices include:
  • Isolated test environment with cleanup
  • Comprehensive configuration validation
  • End-to-end pipeline testing
  • Resource efficient test execution
  • Deterministic test data usage
  • Proper error handling and cleanup

coqui-ai/tts

tests/tts_tests/test_tacotron2_train.py

            
import glob
import json
import os
import shutil

from trainer import get_last_checkpoint

from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.tacotron2_config import Tacotron2Config

config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")

config = Tacotron2Config(
    r=5,
    batch_size=8,
    eval_batch_size=8,
    num_loader_workers=0,
    num_eval_loader_workers=0,
    text_cleaner="english_cleaners",
    use_phonemes=False,
    phoneme_language="en-us",
    phoneme_cache_path=os.path.join(get_tests_output_path(), "train_outputs/phoneme_cache/"),
    run_eval=True,
    test_delay_epochs=-1,
    epochs=1,
    print_step=1,
    test_sentences=[
        "Be a voice, not an echo.",
    ],
    print_eval=True,
    max_decoder_steps=50,
)
config.audio.do_trim_silence = True
config.audio.trim_db = 60
config.save_json(config_path)

# train the model for one epoch
command_train = (
    f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
    f"--coqpit.output_path {output_path} "
    "--coqpit.datasets.0.formatter ljspeech "
    "--coqpit.datasets.0.meta_file_train metadata.csv "
    "--coqpit.datasets.0.meta_file_val metadata.csv "
    "--coqpit.datasets.0.path tests/data/ljspeech "
    "--coqpit.test_delay_epochs 0 "
)
run_cli(command_train)

# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)

# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")

# Check integrity of the config
with open(continue_config_path, "r", encoding="utf-8") as f:
    config_loaded = json.load(f)
assert config_loaded["characters"] is not None
assert config_loaded["output_path"] in continue_path
assert config_loaded["test_delay_epochs"] == 0

# Load the model and run inference
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)

# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)
shutil.rmtree(continue_path)