Back to Repositories

Validating BERT Model Architecture and Tensor Operations in google-research/bert

This test suite validates the BERT model implementation, focusing on core model architecture, embeddings, and tensor operations. It provides comprehensive testing of configuration parameters, model outputs, and tensor reachability within the TensorFlow graph.

Test Coverage Overview

The test suite provides extensive coverage of the BERT model’s core functionality.

Key areas tested include:
  • Model configuration and initialization
  • Embedding and output tensor shapes
  • Input masking and token type handling
  • Tensor reachability in the computation graph

Implementation Analysis

The testing approach uses a BertModelTester class to create parameterized test instances. It leverages TensorFlow’s test framework with session management and tensor operations verification.

Key patterns include:
  • Modular test configuration
  • Dynamic tensor shape validation
  • Systematic graph traversal for reachability checks

Technical Details

Testing tools and configuration:
  • TensorFlow test framework (tf.test.TestCase)
  • Custom tensor generation utilities
  • JSON configuration validation
  • Graph operation tracking
  • Parameterized model initialization

Best Practices Demonstrated

The test suite exemplifies several testing best practices in ML model validation.

Notable practices include:
  • Comprehensive edge case handling
  • Systematic tensor shape verification
  • Modular test configuration
  • Thorough graph connectivity validation
  • Clear separation of test setup and assertions

google-research/bert

modeling_test.py

            
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import collections
import json
import random
import re

import modeling
import six
import tensorflow as tf


class BertModelTest(tf.test.TestCase):

  class BertModelTester(object):

    def __init__(self,
                 parent,
                 batch_size=13,
                 seq_length=7,
                 is_training=True,
                 use_input_mask=True,
                 use_token_type_ids=True,
                 vocab_size=99,
                 hidden_size=32,
                 num_hidden_layers=5,
                 num_attention_heads=4,
                 intermediate_size=37,
                 hidden_act="gelu",
                 hidden_dropout_prob=0.1,
                 attention_probs_dropout_prob=0.1,
                 max_position_embeddings=512,
                 type_vocab_size=16,
                 initializer_range=0.02,
                 scope=None):
      self.parent = parent
      self.batch_size = batch_size
      self.seq_length = seq_length
      self.is_training = is_training
      self.use_input_mask = use_input_mask
      self.use_token_type_ids = use_token_type_ids
      self.vocab_size = vocab_size
      self.hidden_size = hidden_size
      self.num_hidden_layers = num_hidden_layers
      self.num_attention_heads = num_attention_heads
      self.intermediate_size = intermediate_size
      self.hidden_act = hidden_act
      self.hidden_dropout_prob = hidden_dropout_prob
      self.attention_probs_dropout_prob = attention_probs_dropout_prob
      self.max_position_embeddings = max_position_embeddings
      self.type_vocab_size = type_vocab_size
      self.initializer_range = initializer_range
      self.scope = scope

    def create_model(self):
      input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
                                           self.vocab_size)

      input_mask = None
      if self.use_input_mask:
        input_mask = BertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], vocab_size=2)

      token_type_ids = None
      if self.use_token_type_ids:
        token_type_ids = BertModelTest.ids_tensor(
            [self.batch_size, self.seq_length], self.type_vocab_size)

      config = modeling.BertConfig(
          vocab_size=self.vocab_size,
          hidden_size=self.hidden_size,
          num_hidden_layers=self.num_hidden_layers,
          num_attention_heads=self.num_attention_heads,
          intermediate_size=self.intermediate_size,
          hidden_act=self.hidden_act,
          hidden_dropout_prob=self.hidden_dropout_prob,
          attention_probs_dropout_prob=self.attention_probs_dropout_prob,
          max_position_embeddings=self.max_position_embeddings,
          type_vocab_size=self.type_vocab_size,
          initializer_range=self.initializer_range)

      model = modeling.BertModel(
          config=config,
          is_training=self.is_training,
          input_ids=input_ids,
          input_mask=input_mask,
          token_type_ids=token_type_ids,
          scope=self.scope)

      outputs = {
          "embedding_output": model.get_embedding_output(),
          "sequence_output": model.get_sequence_output(),
          "pooled_output": model.get_pooled_output(),
          "all_encoder_layers": model.get_all_encoder_layers(),
      }
      return outputs

    def check_output(self, result):
      self.parent.assertAllEqual(
          result["embedding_output"].shape,
          [self.batch_size, self.seq_length, self.hidden_size])

      self.parent.assertAllEqual(
          result["sequence_output"].shape,
          [self.batch_size, self.seq_length, self.hidden_size])

      self.parent.assertAllEqual(result["pooled_output"].shape,
                                 [self.batch_size, self.hidden_size])

  def test_default(self):
    self.run_tester(BertModelTest.BertModelTester(self))

  def test_config_to_json_string(self):
    config = modeling.BertConfig(vocab_size=99, hidden_size=37)
    obj = json.loads(config.to_json_string())
    self.assertEqual(obj["vocab_size"], 99)
    self.assertEqual(obj["hidden_size"], 37)

  def run_tester(self, tester):
    with self.test_session() as sess:
      ops = tester.create_model()
      init_op = tf.group(tf.global_variables_initializer(),
                         tf.local_variables_initializer())
      sess.run(init_op)
      output_result = sess.run(ops)
      tester.check_output(output_result)

      self.assert_all_tensors_reachable(sess, [init_op, ops])

  @classmethod
  def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
    """Creates a random int32 tensor of the shape within the vocab size."""
    if rng is None:
      rng = random.Random()

    total_dims = 1
    for dim in shape:
      total_dims *= dim

    values = []
    for _ in range(total_dims):
      values.append(rng.randint(0, vocab_size - 1))

    return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)

  def assert_all_tensors_reachable(self, sess, outputs):
    """Checks that all the tensors in the graph are reachable from outputs."""
    graph = sess.graph

    ignore_strings = [
        "^.*/assert_less_equal/.*$",
        "^.*/dilation_rate$",
        "^.*/Tensordot/concat$",
        "^.*/Tensordot/concat/axis$",
        "^testing/.*$",
    ]

    ignore_regexes = [re.compile(x) for x in ignore_strings]

    unreachable = self.get_unreachable_ops(graph, outputs)
    filtered_unreachable = []
    for x in unreachable:
      do_ignore = False
      for r in ignore_regexes:
        m = r.match(x.name)
        if m is not None:
          do_ignore = True
      if do_ignore:
        continue
      filtered_unreachable.append(x)
    unreachable = filtered_unreachable

    self.assertEqual(
        len(unreachable), 0, "The following ops are unreachable: %s" %
        (" ".join([x.name for x in unreachable])))

  @classmethod
  def get_unreachable_ops(cls, graph, outputs):
    """Finds all of the tensors in graph that are unreachable from outputs."""
    outputs = cls.flatten_recursive(outputs)
    output_to_op = collections.defaultdict(list)
    op_to_all = collections.defaultdict(list)
    assign_out_to_in = collections.defaultdict(list)

    for op in graph.get_operations():
      for x in op.inputs:
        op_to_all[op.name].append(x.name)
      for y in op.outputs:
        output_to_op[y.name].append(op.name)
        op_to_all[op.name].append(y.name)
      if str(op.type) == "Assign":
        for y in op.outputs:
          for x in op.inputs:
            assign_out_to_in[y.name].append(x.name)

    assign_groups = collections.defaultdict(list)
    for out_name in assign_out_to_in.keys():
      name_group = assign_out_to_in[out_name]
      for n1 in name_group:
        assign_groups[n1].append(out_name)
        for n2 in name_group:
          if n1 != n2:
            assign_groups[n1].append(n2)

    seen_tensors = {}
    stack = [x.name for x in outputs]
    while stack:
      name = stack.pop()
      if name in seen_tensors:
        continue
      seen_tensors[name] = True

      if name in output_to_op:
        for op_name in output_to_op[name]:
          if op_name in op_to_all:
            for input_name in op_to_all[op_name]:
              if input_name not in stack:
                stack.append(input_name)

      expanded_names = []
      if name in assign_groups:
        for assign_name in assign_groups[name]:
          expanded_names.append(assign_name)

      for expanded_name in expanded_names:
        if expanded_name not in stack:
          stack.append(expanded_name)

    unreachable_ops = []
    for op in graph.get_operations():
      is_unreachable = False
      all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
      for name in all_names:
        if name not in seen_tensors:
          is_unreachable = True
      if is_unreachable:
        unreachable_ops.append(op)
    return unreachable_ops

  @classmethod
  def flatten_recursive(cls, item):
    """Flattens (potentially nested) a tuple/dictionary/list to a list."""
    output = []
    if isinstance(item, list):
      output.extend(item)
    elif isinstance(item, tuple):
      output.extend(list(item))
    elif isinstance(item, dict):
      for (_, v) in six.iteritems(item):
        output.append(v)
    else:
      return [item]

    flat_output = []
    for x in output:
      flat_output.extend(cls.flatten_recursive(x))
    return flat_output


if __name__ == "__main__":
  tf.test.main()