Validating ML Pipeline Integration Workflows in gradio-app/gradio
This test suite validates the integration of Hugging Face Transformers and Diffusers pipelines with the Gradio interface. It ensures proper handling of various ML pipeline types including text generation, image processing, and question answering systems.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
gradio-app/gradio
test/test_pipelines.py
import unittest
from unittest.mock import MagicMock
import pytest
import transformers
from diffusers import (
StableDiffusionDepth2ImgPipeline, # type: ignore
StableDiffusionImageVariationPipeline, # type: ignore
StableDiffusionImg2ImgPipeline, # type: ignore
StableDiffusionInpaintPipeline, # type: ignore
StableDiffusionInstructPix2PixPipeline, # type: ignore
StableDiffusionPipeline, # type: ignore
StableDiffusionUpscalePipeline, # type: ignore
)
from transformers import (
AudioClassificationPipeline,
AutomaticSpeechRecognitionPipeline,
DocumentQuestionAnsweringPipeline,
FeatureExtractionPipeline,
FillMaskPipeline,
ImageClassificationPipeline,
ImageToTextPipeline,
ObjectDetectionPipeline,
QuestionAnsweringPipeline,
SummarizationPipeline,
Text2TextGenerationPipeline,
TextClassificationPipeline,
TextGenerationPipeline,
TranslationPipeline,
VisualQuestionAnsweringPipeline,
ZeroShotClassificationPipeline,
)
import gradio as gr
from gradio.pipelines_utils import (
handle_diffusers_pipeline,
handle_transformers_pipeline,
)
@pytest.mark.flaky
def test_text_to_text_model_from_pipeline():
pipe = transformers.pipeline(model="sshleifer/bart-tiny-random")
io = gr.Interface.from_pipeline(pipe)
output = io("My name is Sylvain and I work at Hugging Face in Brooklyn")
assert isinstance(output, str)
@pytest.mark.flaky
def test_stable_diffusion_pipeline():
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe")
io = gr.Interface.from_pipeline(pipe)
output = io("An astronaut", "low quality", 3, 7.5)
assert isinstance(output, str)
@pytest.mark.flaky
def test_interface_in_blocks():
pipe1 = transformers.pipeline(model="sshleifer/bart-tiny-random")
pipe2 = transformers.pipeline(model="sshleifer/bart-tiny-random")
with gr.Blocks() as demo:
with gr.Tab("Image Inference"):
gr.Interface.from_pipeline(pipe1)
with gr.Tab("Image Inference"):
gr.Interface.from_pipeline(pipe2)
demo.launch(prevent_thread_lock=True)
demo.close()
@pytest.mark.flaky
def test_transformers_load_from_pipeline():
from transformers import pipeline
pipe = pipeline(model="deepset/roberta-base-squad2")
io = gr.Interface.from_pipeline(pipe)
assert io.input_components[0].label == "Context"
assert io.input_components[1].label == "Question"
assert io.output_components[0].label == "Answer"
assert io.output_components[1].label == "Score"
class TestHandleTransformersPipelines(unittest.TestCase):
def test_audio_classification_pipeline(self):
pipe = MagicMock(spec=AudioClassificationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Class"
def test_automatic_speech_recognition_pipeline(self):
pipe = MagicMock(spec=AutomaticSpeechRecognitionPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Output"
def test_object_detection_pipeline(self):
pipe = MagicMock(spec=ObjectDetectionPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input Image"
assert pipeline_info["outputs"].label == "Objects Detected"
def test_feature_extraction_pipeline(self):
pipe = MagicMock(spec=FeatureExtractionPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Output"
def test_fill_mask_pipeline(self):
pipe = MagicMock(spec=FillMaskPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Classification"
def test_image_classification_pipeline(self):
pipe = MagicMock(spec=ImageClassificationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input Image"
assert pipeline_info["outputs"].label == "Classification"
def test_question_answering_pipeline(self):
pipe = MagicMock(spec=QuestionAnsweringPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Context"
assert pipeline_info["inputs"][1].label == "Question"
assert pipeline_info["outputs"][0].label == "Answer"
assert pipeline_info["outputs"][1].label == "Score"
def test_summarization_pipeline(self):
pipe = MagicMock(spec=SummarizationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Summary"
def test_text_classification_pipeline(self):
pipe = MagicMock(spec=TextClassificationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Classification"
def test_text_generation_pipeline(self):
pipe = MagicMock(spec=TextGenerationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Output"
def test_translation_pipeline(self):
pipe = MagicMock(spec=TranslationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Translation"
def test_text2text_generation_pipeline(self):
pipe = MagicMock(spec=Text2TextGenerationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input"
assert pipeline_info["outputs"].label == "Generated Text"
def test_zero_shot_classification_pipeline(self):
pipe = MagicMock(spec=ZeroShotClassificationPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Input"
assert (
pipeline_info["inputs"][1].label == "Possible class names (comma-separated)"
)
assert pipeline_info["inputs"][2].label == "Allow multiple true classes"
assert pipeline_info["outputs"].label == "Classification"
def test_document_question_answering_pipeline(self):
pipe = MagicMock(spec=DocumentQuestionAnsweringPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Input Document"
assert pipeline_info["inputs"][1].label == "Question"
assert pipeline_info["outputs"].label == "Label"
def test_visual_question_answering_pipeline(self):
pipe = MagicMock(spec=VisualQuestionAnsweringPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Input Image"
assert pipeline_info["inputs"][1].label == "Question"
assert pipeline_info["outputs"].label == "Score"
def test_image_to_text_pipeline(self):
pipe = MagicMock(spec=ImageToTextPipeline)
pipeline_info = handle_transformers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"].label == "Input Image"
assert pipeline_info["outputs"].label == "Text"
def test_unsupported_pipeline(self):
pipe = MagicMock()
with self.assertRaises(ValueError):
handle_transformers_pipeline(pipe)
class TestHandleDiffusersPipelines(unittest.TestCase):
def test_stable_diffusion_pipeline(self):
pipe = MagicMock(spec=StableDiffusionPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_img2img_pipeline(self):
pipe = MagicMock(spec=StableDiffusionImg2ImgPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_inpaint_pipeline(self):
pipe = MagicMock(spec=StableDiffusionInpaintPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_depth2img_pipeline(self):
pipe = MagicMock(spec=StableDiffusionDepth2ImgPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_image_variation_pipeline(self):
pipe = MagicMock(spec=StableDiffusionImageVariationPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Image"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_instruct_pix2pix_pipeline(self):
pipe = MagicMock(spec=StableDiffusionInstructPix2PixPipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_stable_diffusion_upscale_pipeline(self):
pipe = MagicMock(spec=StableDiffusionUpscalePipeline)
pipeline_info = handle_diffusers_pipeline(pipe)
assert pipeline_info is not None
assert pipeline_info["inputs"][0].label == "Prompt"
assert pipeline_info["inputs"][1].label == "Negative prompt"
assert pipeline_info["outputs"].label == "Generated Image"
def test_unsupported_pipeline(self):
pipe = MagicMock()
with self.assertRaises(ValueError):
handle_transformers_pipeline(pipe)