Back to Repositories

ColossalAI Testing: Distributed GPU Computing and Model Optimization Validation

The ColossalAI testing framework implements a comprehensive suite of unit tests using pytest, focusing on verifying critical distributed computing and model optimization functionalities. With 179 test cases, the framework thoroughly validates components like FP8 operations, bias additions, and distributed GPU communications, ensuring the reliability of ColossalAI's large-scale AI training capabilities. Qodo Tests Hub provides developers with detailed insights into ColossalAI's testing patterns, making it easier to understand how to implement robust tests for distributed AI systems. Through interactive exploration of real test implementations, developers can learn best practices for testing complex operations like model sharding, precision formats, and multi-GPU communications – essential knowledge for building reliable AI infrastructure.

Path Test Type Language Description
tests/test_autochunk/test_autochunk_alphafold/test_autochunk_evoformer_block.py
unit
python This PyTest unit test verifies automatic memory chunking functionality for EvoformerBlock in ColossalAI’s AlphaFold implementation.
tests/test_autochunk/test_autochunk_alphafold/test_autochunk_extramsa_block.py
unit
python This pytest unit test verifies the ExtraMSA Block component’s functionality and memory management in ColossalAI’s AlphaFold implementation.
tests/test_autochunk/test_autochunk_diffuser/benchmark_autochunk_diffuser.py
unit
python This Python unit test verifies the memory optimization capabilities of ColossalAI’s AutoChunk feature for UNet models through performance benchmarking.
tests/test_autochunk/test_autochunk_diffuser/test_autochunk_unet.py
unit
python This pytest unit test verifies automatic chunking functionality for UNet2D models with varying memory constraints in ColossalAI.
tests/test_autochunk/test_autochunk_transformer/benchmark_autochunk_transformer.py
unit
python This PyTorch benchmark test verifies automatic memory chunking optimization for transformer models in ColossalAI’s GPT implementation.
tests/test_autochunk/test_autochunk_transformer/test_autochunk_transformer_utils.py
unit
python This PyTorch unit test verifies automatic chunking optimization for transformer models in ColossalAI, ensuring correct memory management and execution consistency.
tests/test_booster/test_accelerator.py
unit
python This PyTorch unit test verifies the Accelerator component’s ability to configure models for different compute devices in ColossalAI.
tests/test_booster/test_plugin/test_3d_plugin.py
unit
python This PyUnit test verifies 3D hybrid parallel training functionality including tensor, pipeline, and data parallelism in the ColossalAI framework
tests/test_booster/test_plugin/test_dp_plugin_base.py
unit
python This PyTorch unit test verifies data parallel plugin functionality and dataloader sharding in distributed training environments.
tests/test_booster/test_plugin/test_gemini_plugin.py
unit
python This Python unit test verifies the GeminiPlugin’s functionality across various deep learning models in a distributed training environment.