Testing Tensor Split Handler Implementation in ColossalAI
This test suite validates the SplitHandler implementation in ColossalAI’s auto-parallel system, focusing on tensor sharding strategies for split operations following convolution and linear layers. It ensures proper handling of tensor splitting across different dimensions and device meshes.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_split_handler.py
import pytest
import torch
import torch.nn as nn
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.node_handler import SplitHandler
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import parameterize, rerun_if_address_is_in_use, run_on_environment_flag, spawn
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class ConvSplitModel(nn.Module):
def __init__(self, split_size, split_dim):
super().__init__()
self.split_size = split_size
self.split_dim = split_dim
def forward(self, input, other):
conv_node = nn.functional.conv2d(input, other, bias=None)
split_node = conv_node.split(self.split_size, dim=self.split_dim)
return split_node
class LinearSplitModel(nn.Module):
def __init__(self, split_size, split_dim):
super().__init__()
self.split_size = split_size
self.split_dim = split_dim
def forward(self, input, other):
linear_node = nn.functional.linear(input, other, bias=None)
split_node = linear_node.split(self.split_size, dim=self.split_dim)
return split_node
def check_split_handler(rank, world_size, port, split_size, split_dim, model_cls):
disable_existing_loggers()
launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
model = model_cls(split_size=split_size, split_dim=split_dim).cuda()
if model_cls.__name__ == "ConvSplitModel":
input = torch.rand(8, 8, 66, 66).to("cuda")
other = torch.rand(16, 8, 3, 3).to("cuda")
# index of conv node in computation graph
node_index = 2
# total number of conv strategies
strategy_number = 16
if model_cls.__name__ == "LinearSplitModel":
input = torch.rand(8, 16, 64, 32).to("cuda")
other = torch.rand(64, 32).to("cuda")
# index of linear node in computation graph
node_index = 2
# total number of linear strategies
strategy_number = 23
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
numerical_test_for_node_strategy(
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input, other],
meta_arg_names=["input", "other"],
node_type="following",
)
tracer = ColoTracer(bias_addition_split=True)
if model_cls.__name__ == "ConvSplitModel":
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
# %split : [#users=1] = call_method[target=split](args = (%conv2d,), kwargs = {})
# return split
meta_args = {
"input": torch.rand(8, 8, 66, 66).to("meta"),
"other": torch.rand(16, 8, 3, 3).to("meta"),
}
graph = tracer.trace(model, meta_args=meta_args)
if model_cls.__name__ == "LinearSplitModel":
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
# %split : [#users=1] = call_method[target=split](args = (%linear,), kwargs = {})
# return split
meta_args = {
"input": torch.rand(8, 16, 64, 32).to("meta"),
"other": torch.rand(64, 32).to("meta"),
}
graph = tracer.trace(model, meta_args=meta_args)
gm = ColoGraphModule(model, graph)
shape_prop_pass(gm, *meta_args.values())
previous_mod_node = list(graph.nodes)[2]
split_node = list(graph.nodes)[3]
split_strategies_vector = StrategiesVector(split_node)
previous_strategies_vector = StrategiesVector(previous_mod_node)
# build handler
if model_cls.__name__ == "ConvSplitModel":
conv_handler = ConvFunctionHandler(
node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector
)
conv_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, "strategies_vector", previous_strategies_vector)
if model_cls.__name__ == "LinearSplitModel":
assert len(previous_strategies_vector) == 0
linear_handler = LinearFunctionHandler(
node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector
)
linear_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, "strategies_vector", previous_strategies_vector)
split_handler = SplitHandler(node=split_node, device_mesh=device_mesh, strategies_vector=split_strategies_vector)
split_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping
mapping = split_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
if model_cls.__name__ == "ConvSplitModel":
assert mapping["input"].name == "conv2d"
else:
assert mapping["input"].name == "linear"
assert mapping["input"].data.is_meta
assert mapping["input"].data.shape == torch.Size([8, 16, 64, 64])
assert mapping["input"].type == OperationDataType.ARG
assert mapping["input"].logical_shape == torch.Size([8, 16, 64, 64])
assert mapping["output"].name == "split"
split_items = torch.empty([8, 16, 64, 64]).split(split_size, split_dim)
assert mapping["output"].logical_shape == tuple([item.shape for item in split_items])
assert mapping["output"].type == OperationDataType.OUTPUT
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(split_strategies_vector) == len(previous_strategies_vector)
strategy_name_list = [strategy.name for strategy in split_strategies_vector]
if model_cls.__name__ == "ConvSplitModel":
if split_dim == 0:
assert "[R, S1, R, R]_0" in strategy_name_list
assert "[R, S0, R, R]_1" in strategy_name_list
assert "[R, R, R, R]_2" in strategy_name_list
assert "[R, R, R, R]_3" in strategy_name_list
assert "[R, R, R, R]_4" in strategy_name_list
assert "[R, R, R, R]_5" in strategy_name_list
assert "[R, S1, R, R]_6" in strategy_name_list
assert "[R, S0, R, R]_7" in strategy_name_list
assert "[R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R]_9" in strategy_name_list
assert "[R, S0, R, R]_10" in strategy_name_list
assert "[R, S1, R, R]_11" in strategy_name_list
assert "[R, R, R, R]_12" in strategy_name_list
assert "[R, R, R, R]_13" in strategy_name_list
assert "[R, R, R, R]_14" in strategy_name_list
assert "[R, S01, R, R]_15" in strategy_name_list
if split_dim == 1:
assert "[S0, R, R, R]_0" in strategy_name_list
assert "[S1, R, R, R]_1" in strategy_name_list
assert "[S0, R, R, R]_2" in strategy_name_list
assert "[S1, R, R, R]_3" in strategy_name_list
assert "[S0, R, R, R]_4" in strategy_name_list
assert "[S1, R, R, R]_5" in strategy_name_list
assert "[R, R, R, R]_6" in strategy_name_list
assert "[R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R]_9" in strategy_name_list
assert "[R, R, R, R]_10" in strategy_name_list
assert "[R, R, R, R]_11" in strategy_name_list
assert "[R, R, R, R]_12" in strategy_name_list
assert "[S01, R, R, R]_13" in strategy_name_list
assert "[R, R, R, R]_14" in strategy_name_list
assert "[R, R, R, R]_15" in strategy_name_list
if model_cls.__name__ == "LinearSplitModel":
if split_dim == 0:
assert "[R, R, R, S1]_11" in strategy_name_list
assert "[R, S0, R, S1]_12" in strategy_name_list
assert "[R, R, S0, S1]_13" in strategy_name_list
assert "[R, R, R, S0]_14" in strategy_name_list
assert "[R, S1, R, S0]_15" in strategy_name_list
assert "[R, R, S1, S0]_16" in strategy_name_list
assert "[R, R, R, R]_17" in strategy_name_list
assert "[R, S0, R, R]_18" in strategy_name_list
assert "[R, R, S0, R]_19" in strategy_name_list
assert "[R, R, R, R]_20" in strategy_name_list
assert "[R, S1, R, R]_21" in strategy_name_list
assert "[R, R, S1, R]_22" in strategy_name_list
assert "[R, R, R, S1]_10" in strategy_name_list
assert "[R, R, R, S0]_9" in strategy_name_list
assert "[R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, S0]_6" in strategy_name_list
assert "[R, R, R, S1]_5" in strategy_name_list
assert "[R, R, R, R]_0" in strategy_name_list
assert "[R, S01, R, R]_1" in strategy_name_list
assert "[R, R, S01, R]_2" in strategy_name_list
assert "[R, R, R, R]_3" in strategy_name_list
assert "[R, R, R, S01]_4" in strategy_name_list
if split_dim == 1:
assert "[S0, R, R, S1]_11" in strategy_name_list
assert "[R, R, R, S1]_12" in strategy_name_list
assert "[R, R, S0, S1]_13" in strategy_name_list
assert "[S1, R, R, S0]_14" in strategy_name_list
assert "[R, R, R, S0]_15" in strategy_name_list
assert "[R, R, S1, S0]_16" in strategy_name_list
assert "[S0, R, R, R]_17" in strategy_name_list
assert "[R, R, R, R]_18" in strategy_name_list
assert "[R, R, S0, R]_19" in strategy_name_list
assert "[S1, R, R, R]_20" in strategy_name_list
assert "[R, R, R, R]_21" in strategy_name_list
assert "[R, R, S1, R]_22" in strategy_name_list
assert "[R, R, R, S1]_10" in strategy_name_list
assert "[R, R, R, S0]_9" in strategy_name_list
assert "[R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, S0]_6" in strategy_name_list
assert "[R, R, R, S1]_5" in strategy_name_list
assert "[S01, R, R, R]_0" in strategy_name_list
assert "[R, R, R, R]_1" in strategy_name_list
assert "[R, R, S01, R]_2" in strategy_name_list
assert "[R, R, R, R]_3" in strategy_name_list
assert "[R, R, R, S01]_4" in strategy_name_list
@run_on_environment_flag(name="AUTO_PARALLEL")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@parameterize("split_size", [2])
@parameterize("split_dim", [0, 1, 2])
@parameterize("model_cls", [ConvSplitModel, LinearSplitModel])
def test_split_handler(split_size, split_dim, model_cls):
spawn(check_split_handler, 4, split_size=split_size, split_dim=split_dim, model_cls=model_cls)
if __name__ == "__main__":
test_split_handler()