Testing View Operation Handler Implementation in ColossalAI
This test suite validates the ViewHandler implementation in ColossalAI’s auto-parallel tensor sharding system. It focuses on testing view operations following convolutional and linear layers, ensuring correct strategy propagation and tensor reshaping across distributed environments.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_view_handler.py
import pytest
import torch
import torch.nn as nn
from colossalai._analyzer.fx.graph_module import ColoGraphModule
from colossalai._analyzer.fx.passes.shape_prop import shape_prop_pass
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.node_handler import ViewHandler
from colossalai.auto_parallel.tensor_shard.node_handler.conv_handler import ConvFunctionHandler
from colossalai.auto_parallel.tensor_shard.node_handler.linear_handler import LinearFunctionHandler
from colossalai.auto_parallel.tensor_shard.sharding_strategy import OperationData, OperationDataType, StrategiesVector
from colossalai.device.device_mesh import DeviceMesh
from colossalai.initialize import launch
from colossalai.logging import disable_existing_loggers
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
from colossalai.testing.pytest_wrapper import run_on_environment_flag
from tests.test_auto_parallel.test_tensor_shard.test_node_handler.utils import numerical_test_for_node_strategy
class ConvViewModel(nn.Module):
def __init__(self, tgt_shape):
super().__init__()
self.tgt_shape = tgt_shape
def forward(self, input, other):
conv_node = nn.functional.conv2d(input, other, bias=None)
reshape_node = conv_node.view(*self.tgt_shape)
return reshape_node
class LinearViewModel(nn.Module):
def __init__(self, tgt_shape):
super().__init__()
self.tgt_shape = tgt_shape
def forward(self, input, other):
linear_node = nn.functional.linear(input, other, bias=None)
reshape_node = linear_node.view(*self.tgt_shape)
return reshape_node
def check_view_handler(rank, tgt_shape, model_cls, world_size, port):
disable_existing_loggers()
launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
model = model_cls(tgt_shape).cuda()
if model_cls.__name__ == "ConvViewModel":
input = torch.rand(8, 8, 66, 66).to("cuda")
other = torch.rand(16, 8, 3, 3).to("cuda")
# index of conv node in computation graph
node_index = 2
# total number of conv strategies
strategy_number = 16
if model_cls.__name__ == "LinearViewModel":
input = torch.rand(8, 16, 64, 32).to("cuda")
other = torch.rand(64, 32).to("cuda")
# index of linear node in computation graph
node_index = 2
# total number of linear strategies
strategy_number = 23
physical_mesh_id = torch.arange(0, 4)
mesh_shape = (2, 2)
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape, init_process_group=True)
numerical_test_for_node_strategy(
model=model,
device_mesh=device_mesh,
node_index=node_index,
strategy_number=strategy_number,
input_args=[input, other],
meta_arg_names=["input", "other"],
node_type="following",
)
tracer = ColoTracer(bias_addition_split=True)
if model_cls.__name__ == "ConvViewModel":
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %conv2d : [#users=1] = call_function[target=torch.conv2d](args = (%input_1, %other), kwargs = {})
# %view : [#users=1] = call_method[target=view](args = (%conv2d, 2, -1), kwargs = {})
# return view
meta_args = {"input": torch.rand(8, 8, 66, 66).to("meta"), "other": torch.rand(16, 8, 3, 3).to("meta")}
graph = tracer.trace(model, meta_args=meta_args)
if model_cls.__name__ == "LinearViewModel":
# graph():
# %input_1 : torch.Tensor [#users=1] = placeholder[target=input]
# %other : torch.Tensor [#users=1] = placeholder[target=other]
# %linear : [#users=1] = call_function[target=torch._C._nn.linear](args = (%input_1, %other), kwargs = {bias: None})
# %view : [#users=1] = call_method[target=view](args = (%linear, 32, 4, 32, 32, 4), kwargs = {})
# return view
meta_args = {
"input": torch.rand(8, 16, 64, 32).to("meta"),
"other": torch.rand(64, 32).to("meta"),
}
graph = tracer.trace(model, meta_args=meta_args)
gm = ColoGraphModule(model, graph)
shape_prop_pass(gm, *meta_args.values())
previous_mod_node = list(graph.nodes)[2]
view_node = list(graph.nodes)[3]
view_strategies_vector = StrategiesVector(view_node)
previous_strategies_vector = StrategiesVector(previous_mod_node)
# build handler
if model_cls.__name__ == "ConvViewModel":
conv_handler = ConvFunctionHandler(
node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector
)
conv_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, "strategies_vector", previous_strategies_vector)
if model_cls.__name__ == "LinearViewModel":
assert len(previous_strategies_vector) == 0
linear_handler = LinearFunctionHandler(
node=previous_mod_node, device_mesh=device_mesh, strategies_vector=previous_strategies_vector
)
linear_handler.register_strategy(compute_resharding_cost=False)
setattr(previous_mod_node, "strategies_vector", previous_strategies_vector)
view_handler = ViewHandler(node=view_node, device_mesh=device_mesh, strategies_vector=view_strategies_vector)
view_handler.register_strategy(compute_resharding_cost=False)
# check operation data mapping
mapping = view_handler.get_operation_data_mapping()
for name, op_data in mapping.items():
op_data: OperationData
# make sure they have valid values
assert op_data.data is not None
if model_cls.__name__ == "ConvViewModel":
assert mapping["input"].name == "conv2d"
else:
assert mapping["input"].name == "linear"
assert mapping["input"].data.is_meta
assert mapping["input"].data.shape == torch.Size([8, 16, 64, 64])
assert mapping["input"].type == OperationDataType.ARG
assert mapping["input"].logical_shape == torch.Size([8, 16, 64, 64])
assert mapping["output"].name == "view"
assert mapping["output"].data.is_meta
assert mapping["output"].data.shape == torch.Size(tgt_shape)
assert mapping["output"].type == OperationDataType.OUTPUT
# reshape handler is a following strategy handler, so the number of strategies is equal to the predecessor node.
assert len(view_strategies_vector) == len(previous_strategies_vector)
strategy_name_list = [strategy.name for strategy in view_strategies_vector]
if model_cls.__name__ == "ConvViewModel":
if tgt_shape == (32, 4, 64, 16, 4):
assert "[S0, S1, R, R] -> FULLY REPLICATED_0" in strategy_name_list
assert "[S1, S0, R, R] -> FULLY REPLICATED_1" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R]_2" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R]_3" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R]_4" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R]_5" in strategy_name_list
assert "[R, S1, R, R] -> FULLY REPLICATED_6" in strategy_name_list
assert "[R, S0, R, R] -> FULLY REPLICATED_7" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_9" in strategy_name_list
assert "[R, S0, R, R] -> FULLY REPLICATED_10" in strategy_name_list
assert "[R, S1, R, R] -> FULLY REPLICATED_11" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_12" in strategy_name_list
assert "[S01, R, R, R] -> [S01, R, R, R, R]_13" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_14" in strategy_name_list
assert "[R, S01, R, R] -> FULLY REPLICATED_15" in strategy_name_list
if tgt_shape == (8, 4, 4, 64, 16, 4):
assert "[S0, S1, R, R] -> [S0, S1, R, R, R, R]_0" in strategy_name_list
assert "[S1, S0, R, R] -> [S1, S0, R, R, R, R]_1" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R, R]_2" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R, R]_3" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R, R]_4" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R, R]_5" in strategy_name_list
assert "[R, S1, R, R] -> [R, S1, R, R, R, R]_6" in strategy_name_list
assert "[R, S0, R, R] -> [R, S0, R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_9" in strategy_name_list
assert "[R, S0, R, R] -> [R, S0, R, R, R, R]_10" in strategy_name_list
assert "[R, S1, R, R] -> [R, S1, R, R, R, R]_11" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_12" in strategy_name_list
assert "[S01, R, R, R] -> [S01, R, R, R, R, R]_13" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_14" in strategy_name_list
assert "[R, S01, R, R] -> [R, S01, R, R, R, R]_15" in strategy_name_list
if model_cls.__name__ == "LinearViewModel":
if tgt_shape == (32, 4, 64, 16, 4):
for strategy in strategy_name_list:
print(strategy)
# print(strategy_name_list)
assert "[S0, R, R, S1] -> [S0, R, R, S1, R]_11" in strategy_name_list
assert "[R, S0, R, S1] -> FULLY REPLICATED_12" in strategy_name_list
assert "[R, R, S0, S1] -> [R, R, S0, S1, R]_13" in strategy_name_list
assert "[S1, R, R, S0] -> [S1, R, R, S0, R]_14" in strategy_name_list
assert "[R, S1, R, S0] -> FULLY REPLICATED_15" in strategy_name_list
assert "[R, R, S1, S0] -> [R, R, S1, S0, R]_16" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R]_17" in strategy_name_list
assert "[R, S0, R, R] -> FULLY REPLICATED_18" in strategy_name_list
assert "[R, R, S0, R] -> [R, R, S0, R, R]_19" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R]_20" in strategy_name_list
assert "[R, S1, R, R] -> FULLY REPLICATED_21" in strategy_name_list
assert "[R, R, S1, R] -> [R, R, S1, R, R]_22" in strategy_name_list
assert "[R, R, R, S1] -> [R, R, R, S1, R]_10" in strategy_name_list
assert "[R, R, R, S0] -> [R, R, R, S0, R]_9" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, S0] -> [R, R, R, S0, R]_6" in strategy_name_list
assert "[R, R, R, S1] -> [R, R, R, S1, R]_5" in strategy_name_list
assert "[S01, R, R, R] -> [S01, R, R, R, R]_0" in strategy_name_list
assert "[R, S01, R, R] -> FULLY REPLICATED_1" in strategy_name_list
assert "[R, R, S01, R] -> [R, R, S01, R, R]_2" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R]_3" in strategy_name_list
assert "[R, R, R, S01] -> [R, R, R, S01, R]_4" in strategy_name_list
if tgt_shape == (8, 4, 4, 64, 16, 4):
assert "[S0, R, R, S1] -> [S0, R, R, R, S1, R]_11" in strategy_name_list
assert "[R, S0, R, S1] -> [R, S0, R, R, S1, R]_12" in strategy_name_list
assert "[R, R, S0, S1] -> [R, R, R, S0, S1, R]_13" in strategy_name_list
assert "[S1, R, R, S0] -> [S1, R, R, R, S0, R]_14" in strategy_name_list
assert "[R, S1, R, S0] -> [R, S1, R, R, S0, R]_15" in strategy_name_list
assert "[R, R, S1, S0] -> [R, R, R, S1, S0, R]_16" in strategy_name_list
assert "[S0, R, R, R] -> [S0, R, R, R, R, R]_17" in strategy_name_list
assert "[R, S0, R, R] -> [R, S0, R, R, R, R]_18" in strategy_name_list
assert "[R, R, S0, R] -> [R, R, R, S0, R, R]_19" in strategy_name_list
assert "[S1, R, R, R] -> [S1, R, R, R, R, R]_20" in strategy_name_list
assert "[R, S1, R, R] -> [R, S1, R, R, R, R]_21" in strategy_name_list
assert "[R, R, S1, R] -> [R, R, R, S1, R, R]_22" in strategy_name_list
assert "[R, R, R, S1] -> [R, R, R, R, S1, R]_10" in strategy_name_list
assert "[R, R, R, S0] -> [R, R, R, R, S0, R]_9" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_8" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_7" in strategy_name_list
assert "[R, R, R, S0] -> [R, R, R, R, S0, R]_6" in strategy_name_list
assert "[R, R, R, S1] -> [R, R, R, R, S1, R]_5" in strategy_name_list
assert "[S01, R, R, R] -> [S01, R, R, R, R, R]_0" in strategy_name_list
assert "[R, S01, R, R] -> [R, S01, R, R, R, R]_1" in strategy_name_list
assert "[R, R, S01, R] -> [R, R, R, S01, R, R]_2" in strategy_name_list
assert "[R, R, R, R] -> [R, R, R, R, R, R]_3" in strategy_name_list
assert "[R, R, R, S01] -> [R, R, R, R, S01, R]_4" in strategy_name_list
@run_on_environment_flag(name="AUTO_PARALLEL")
@pytest.mark.dist
@rerun_if_address_is_in_use()
@parameterize("tgt_shape", [(32, 4, 64, 16, 4), (8, 4, 4, 64, 16, 4)])
@parameterize("model_cls", [ConvViewModel, LinearViewModel])
def test_view_handler(tgt_shape, model_cls):
spawn(check_view_handler, 4, tgt_shape=tgt_shape, model_cls=model_cls)
if __name__ == "__main__":
test_view_handler()