Testing Tensor Sharding Solver with ResNet50 in ColossalAI
This test suite validates the tensor sharding solver functionality in ColossalAI’s auto-parallel system using ResNet50 as a test model. It focuses on cost analysis, strategy construction, and optimization of distributed model execution.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_auto_parallel/test_tensor_shard/test_solver_with_resnet_v2.py
import torch
from torch.fx import GraphModule
from torchvision.models import resnet50
from colossalai._analyzer.fx.passes import shape_prop_pass
# from colossalai.fx.tracer.tracer import ColoTracer
from colossalai._analyzer.fx.tracer.tracer import ColoTracer
from colossalai.auto_parallel.tensor_shard.constants import BATCHNORM_MODULE_OP
from colossalai.auto_parallel.tensor_shard.options import SolverOptions
from colossalai.auto_parallel.tensor_shard.solver import CostGraph, Solver, StrategiesConstructor
from colossalai.device.device_mesh import DeviceMesh
from colossalai.tensor.shape_consistency import ShapeConsistencyManager
from colossalai.testing import clear_cache_before_run, run_on_environment_flag
@run_on_environment_flag(name="AUTO_PARALLEL")
@clear_cache_before_run()
def test_cost_graph():
physical_mesh_id = torch.arange(0, 8)
mesh_shape = (2, 4)
# [[0, 1]
# [2, 3]]
device_mesh = DeviceMesh(physical_mesh_id, mesh_shape)
ShapeConsistencyManager()
tracer = ColoTracer(bias_addition_split=True)
model = resnet50(num_classes=100000)
input_sample = {"x": torch.rand(128, 3, 224, 224).to("meta")}
graph = tracer.trace(root=model, meta_args=input_sample)
# graph():
# %x : torch.Tensor [#users=1] = placeholder[target=x]
# %conv1 : [#users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
# %bn1 : [#users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
# %relu : [#users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
# %maxpool : [#users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
# %layer1_0_conv1 : [#users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
# %layer1_0_bn1 : [#users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
# %layer1_0_relu : [#users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
# %layer1_0_conv2 : [#users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
# %layer1_0_bn2 : [#users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
# %add : [#users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
# %layer1_0_relu_1 : [#users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
# %layer1_1_conv1 : [#users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
# %layer1_1_bn1 : [#users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
# %layer1_1_relu : [#users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
# %layer1_1_conv2 : [#users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
# %layer1_1_bn2 : [#users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
# %add_1 : [#users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
# ...
# %avgpool : [#users=1] = call_module[target=avgpool](args = (%layer4_2_relu_1,), kwargs = {})
# %flatten : [#users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
# %fc : [#users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
# return fc
gm = GraphModule(model, graph, model.__class__.__name__)
shape_prop_pass(gm, *input_sample.values())
gm.recompile()
solver_options = SolverOptions()
strategies_constructor = StrategiesConstructor(graph, device_mesh, solver_options)
strategies_constructor.build_strategies_and_cost()
cost_graph = CostGraph(strategies_constructor.leaf_strategies)
cost_graph.simplify_graph()
solver = Solver(gm.graph, strategies_constructor, cost_graph)
ret = solver.call_solver_serialized_args()
print(ret[0])
print(solver.last_s_val)
strategies_list = solver.last_s_val
computation_cost = 0
communication_cost = 0
communication_cost_bn = 0
memory_cost = 0
for index, node in enumerate(graph.nodes):
if node.op == "call_module":
submod = node.graph.owning_module.get_submodule(node.target)
if type(submod) in BATCHNORM_MODULE_OP:
communication_cost_bn += node.strategies_vector[strategies_list[index]].communication_cost.total
print(node.name, node.strategies_vector[strategies_list[index]].name)
computation_cost += node.strategies_vector[strategies_list[index]].compute_cost.total
communication_cost += node.strategies_vector[strategies_list[index]].communication_cost.total
node_memory_cost = node.strategies_vector[strategies_list[index]].memory_cost.total
if isinstance(node_memory_cost, tuple):
node_memory_cost = node_memory_cost[0]
memory_cost += node_memory_cost.activation + node_memory_cost.parameter
print(f"computation cost is {computation_cost}")
print(f"communication cost is {communication_cost}")
print(f"memory cost is {memory_cost}")
print(f"bn communication cost is {communication_cost_bn}")
if __name__ == "__main__":
test_cost_graph()