Validating Hybrid Parallel Checkpoint I/O Operations in ColossalAI
This test suite validates checkpoint I/O functionality in a hybrid parallel environment using ColossalAI’s HybridParallelPlugin. It ensures proper state dictionary saving and loading across different parallel configurations while maintaining model accuracy and optimization state.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_checkpoint_io/test_hybrid_parallel_plugin_checkpoint_io.py
import pytest
import torch
import torch.distributed as dist
from packaging.version import Version
from torch.optim import Adam
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import HybridParallelPlugin
from colossalai.shardformer.layer.utils import Randomizer
from colossalai.tensor.d_tensor.api import clear_layout_converter
from colossalai.testing import (
assert_close_loose,
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
if Version(torch.__version__) < Version("2.0.0"):
TEST_CONFIGS = [
{
"tp_size": 4,
"pp_size": 1,
"precision": "fp32",
},
{"tp_size": 2, "pp_size": 2, "num_microbatches": 4, "precision": "fp16", "initial_scale": 1},
{"tp_size": 2, "pp_size": 1, "zero_stage": 2, "precision": "fp16", "initial_scale": 1},
{"tp_size": 1, "pp_size": 2, "num_microbatches": 4, "zero_stage": 1, "precision": "fp16", "initial_scale": 1},
]
else:
TEST_CONFIGS = [
# TODO(ver217): other configs lead to hang
{"tp_size": 1, "pp_size": 2, "num_microbatches": 4, "zero_stage": 1, "precision": "fp16", "initial_scale": 1},
]
@parameterize("shard", [True, False])
@parameterize("model_name", ["transformers_llama_for_causal_lm"])
@parameterize("size_per_shard", [32])
@parameterize("test_config", TEST_CONFIGS)
@clear_cache_before_run()
def exam_state_dict(shard: bool, model_name: str, size_per_shard: int, test_config: dict):
(model_fn, data_gen_fn, output_transform_fn, loss_fn, _) = next(
iter(model_zoo.get_sub_registry(model_name).values())
)
criterion = loss_fn
plugin = HybridParallelPlugin(**test_config)
booster = Booster(plugin=plugin)
def _criterion(outputs, inputs):
outputs = output_transform_fn(outputs)
loss = criterion(outputs)
return loss
def _preprocess_data(data):
if booster.plugin.stage_manager is not None:
for k, v in data.items():
if torch.is_tensor(v) or "Tensor" in v.__class__.__name__:
new_shape = [1] * v.dim()
new_shape[0] = 4
data[k] = v.to("cuda").repeat(*new_shape)
return iter([data])
else:
return {k: v.cuda() for k, v in data.items()}
model = model_fn().cuda()
optimizer = Adam(model.parameters(), lr=1e-3)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
data = data_gen_fn()
model.train()
if booster.plugin.stage_manager is not None:
booster.execute_pipeline(_preprocess_data(data), model, _criterion, optimizer, return_loss=True)
else:
output = model(**_preprocess_data(data))
loss = criterion(output)
optimizer.backward(loss)
optimizer.step()
optimizer.zero_grad()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_model(model, model_ckpt_path, shard=shard, size_per_shard=size_per_shard)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, size_per_shard=size_per_shard)
dist.barrier()
new_model = model_fn().cuda()
new_optimizer = Adam(new_model.parameters(), lr=1e-3)
new_model, new_optimizer, criterion, _, _ = booster.boost(new_model, new_optimizer, criterion)
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(model.unwrap().state_dict(), new_model.unwrap().state_dict())
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.unwrap().state_dict(), new_optimizer.unwrap().state_dict())
dist.barrier()
# Check whether the loaded model & optimizer works smoothly.
model.train()
new_model.train()
data_for_shard = data_gen_fn()
data_for_origin = data_gen_fn()
if booster.plugin.stage_manager is not None:
booster.execute_pipeline(_preprocess_data(data_for_shard), model, _criterion, optimizer, return_loss=True)
booster.execute_pipeline(
_preprocess_data(data_for_origin),
new_model,
_criterion,
new_optimizer,
return_loss=True,
)
else:
old_model_loss = criterion(model(**_preprocess_data(data_for_shard)))
optimizer.backward(old_model_loss)
new_model_loss = criterion(new_model(**_preprocess_data(data_for_origin)))
new_optimizer.backward(new_model_loss)
optimizer.step()
new_optimizer.step()
# Check updated weights.
for p1, p2 in zip(model.unwrap().parameters(), new_model.unwrap().parameters()):
assert_close_loose(p1, p2, atol=5e-3, rtol=5e-3)
dist.barrier()
Randomizer.reset_index()
clear_layout_converter()
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
exam_state_dict()
@pytest.mark.dist
@pytest.mark.parametrize("world_size", [4])
@rerun_if_address_is_in_use()
def test_hybrid_ckpIO(world_size):
spawn(run_dist, world_size)
if __name__ == "__main__":
test_hybrid_ckpIO(4)