Testing Low-Level ZeRO Checkpoint I/O Operations in ColossalAI
This test suite validates checkpoint I/O functionality for ColossolAI’s low-level ZeRO optimization implementation, focusing on model and optimizer state management across distributed training scenarios.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_checkpoint_io/test_low_level_zero_checkpoint_io.py
from copy import deepcopy
from typing import Optional
import torch
import torch.distributed as dist
from peft import LoraConfig
from torchvision.models import resnet18
from utils import shared_tempdir
import colossalai
from colossalai.booster import Booster
from colossalai.booster.plugin import LowLevelZeroPlugin
from colossalai.nn.optimizer import HybridAdam
from colossalai.testing import (
check_state_dict_equal,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from colossalai.zero import LowLevelZeroOptimizer
from tests.kit.model_zoo import model_zoo
# stage 1 and 2 process the optimizer/mode the same way
# only test 2 is fine
@clear_cache_before_run()
@parameterize("stage", [2])
@parameterize("shard", [False, True])
@parameterize("offload", [False, True])
@parameterize("use_async", [False, True])
def check_low_level_zero_checkpointIO(stage: int, shard: bool, offload: bool, use_async: bool):
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=32, cpu_offload=offload)
booster = Booster(plugin=plugin)
model = resnet18()
criterion = lambda x: x.mean()
optimizer = HybridAdam((model.parameters()), lr=0.001)
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
x = torch.randn(1, 3, 224, 224, device="cuda")
output = model(x)
loss = criterion(output)
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
if not shard and not use_async:
model_ckpt_path = f"{model_ckpt_path}.pt"
if not shard and use_async:
model_ckpt_path = f"{model_ckpt_path}.safetensors"
if not shard and use_async:
optimizer_ckpt_path = f"{tempdir}/optimizer.safetensors"
booster.save_model(
model,
model_ckpt_path,
shard=shard,
use_async=use_async,
)
# lr scheduler is tested in test_torch_ddp_checkpoint_io.py and low level zero does not change it, we can skip it here
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=shard, use_async=use_async)
booster.checkpoint_io._sync_d2h()
booster.checkpoint_io._sync_io()
dist.barrier()
new_model = resnet18()
new_optimizer = HybridAdam((new_model.parameters()), lr=0.001)
new_model, new_optimizer, _, _, _ = booster.boost(new_model, new_optimizer)
booster.load_model(new_model, model_ckpt_path)
check_state_dict_equal(model.state_dict(), new_model.state_dict())
# check master weight
assert isinstance(new_optimizer, LowLevelZeroOptimizer)
working_param_id_set = set(id(p) for p in new_model.parameters())
for p_id, master_param in new_optimizer.working_to_master_param.items():
assert p_id in working_param_id_set
working_param = new_optimizer.master_to_working_param[id(master_param)]
padding = new_optimizer.get_param_padding_size(working_param)
padded_param = torch.nn.functional.pad(working_param.data.view(-1), (0, padding))
working_shard = padded_param.chunk(dist.get_world_size())[dist.get_rank()]
assert torch.equal(
working_shard, master_param.data.view(-1).to(dtype=padded_param.dtype, device=padded_param.device)
)
booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.optim.state_dict(), new_optimizer.optim.state_dict())
torch.cuda.empty_cache()
def run_fn(stage, shard, offload, model_fn, data_gen_fn, output_transform_fn, lora_config=None) -> Optional[str]:
try:
plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5, cpu_offload=offload)
new_plugin = LowLevelZeroPlugin(stage=stage, max_norm=1.0, initial_scale=2**5, cpu_offload=offload)
booster = Booster(plugin=plugin)
new_booster = Booster(plugin=new_plugin)
model = model_fn()
optimizer = HybridAdam(model.parameters(), lr=1e-3)
new_model = deepcopy(model)
new_optimizer = HybridAdam(new_model.parameters(), lr=1e-3)
model = booster.enable_lora(model, lora_config=lora_config)
criterion = lambda x: x.mean()
data = data_gen_fn()
data = {
k: v.to("cuda") if torch.is_tensor(v) or "Tensor" in v.__class__.__name__ else v for k, v in data.items()
}
model, optimizer, criterion, _, _ = booster.boost(model, optimizer, criterion)
output = model(**data)
output = output_transform_fn(output)
output_key = list(output.keys())[0]
loss = criterion(output[output_key])
booster.backward(loss, optimizer)
optimizer.step()
with shared_tempdir() as tempdir:
model_ckpt_path = f"{tempdir}/model"
optimizer_ckpt_path = f"{tempdir}/optimizer"
booster.save_lora_as_pretrained(model, model_ckpt_path)
booster.save_optimizer(optimizer, optimizer_ckpt_path, shard=False)
new_model = new_booster.enable_lora(new_model, pretrained_dir=model_ckpt_path, lora_config=lora_config)
new_model, new_optimizer, criterion, _, _ = new_booster.boost(new_model, new_optimizer, criterion)
check_state_dict_equal(model.state_dict(), new_model.state_dict())
# check master weight
assert isinstance(new_optimizer, LowLevelZeroOptimizer)
working_param_id_set = set(id(p) for p in new_model.parameters())
for p_id, master_param in new_optimizer.working_to_master_param.items():
assert p_id in working_param_id_set
working_param = new_optimizer.master_to_working_param[id(master_param)]
padding = new_optimizer.get_param_padding_size(working_param)
padded_param = torch.nn.functional.pad(working_param.data.view(-1), (0, padding))
working_shard = padded_param.chunk(dist.get_world_size())[dist.get_rank()]
assert torch.equal(
working_shard, master_param.data.view(-1).to(dtype=padded_param.dtype, device=padded_param.device)
)
new_booster.load_optimizer(new_optimizer, optimizer_ckpt_path)
check_state_dict_equal(optimizer.optim.state_dict(), new_optimizer.optim.state_dict())
except Exception as e:
# return repr(e)
raise e
@clear_cache_before_run()
@parameterize("stage", [2])
@parameterize("shard", [True, False])
@parameterize("offload", [False, True])
@parameterize("model_name", ["transformers_llama"])
def check_low_level_zero_lora_checkpointIO(
stage: int, shard: bool, offload: bool, model_name: str, early_stop: bool = True
):
passed_models = []
failed_info = {} # (model_name, error) pair
sub_model_zoo = model_zoo.get_sub_registry(model_name)
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if name != "transformers_llama":
continue
task_type = None
if name == "transformers_llama_for_causal_lm":
task_type = "CAUSAL_LM"
if name == "transformers_llama_for_sequence_classification":
task_type = "SEQ_CLS"
lora_config = LoraConfig(task_type=task_type, r=8, lora_alpha=32, lora_dropout=0.1)
err = run_fn(stage, shard, offload, model_fn, data_gen_fn, output_transform_fn, lora_config)
torch.cuda.empty_cache()
if err is None:
passed_models.append(name)
else:
failed_info[name] = err
if early_stop:
break
if dist.get_rank() == 0:
print(f"Passed models({len(passed_models)}): {passed_models}
")
print(f"Failed models({len(failed_info)}): {list(failed_info.keys())}
")
assert len(failed_info) == 0, "
".join([f"{k}: {v}" for k, v in failed_info.items()])
def run_dist(rank, world_size, port):
colossalai.launch(rank=rank, world_size=world_size, port=port, host="localhost")
check_low_level_zero_checkpointIO()
check_low_level_zero_lora_checkpointIO()
torch.cuda.empty_cache()
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_low_level_zero_checkpointIO():
spawn(run_dist, 2)
if __name__ == "__main__":
test_low_level_zero_checkpointIO()