Validating CIFAR10 Training Configuration Implementation in ColossalAI
This test suite validates the configuration setup for CIFAR10 dataset training in ColossalAI. It focuses on verifying the proper initialization of dataset parameters, transformation pipelines, and dataloader configurations essential for distributed training workflows.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_config/sample_config.py
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
train_data = dict(
dataset=dict(
type="CIFAR10Dataset",
root="/path/to/data",
download=True,
transform_pipeline=[
dict(type="RandomResizedCrop", size=224),
dict(type="RandomHorizontalFlip"),
dict(type="ToTensor"),
dict(type="Normalize", mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)),
],
),
dataloader=dict(
batch_size=64,
pin_memory=True,
num_workers=4,
sampler=dict(
type="DataParallelSampler",
shuffle=True,
),
),
)