Back to Repositories

Validating Configuration Loading and Attribute Access in ColossalAI

This test suite validates the configuration loading functionality in ColossalAI, focusing on proper attribute access and data structure verification. It ensures the Config class can correctly parse and load configuration files while maintaining hierarchical data access patterns.

Test Coverage Overview

The test coverage focuses on configuration file loading and attribute access verification.

  • Tests basic config file loading from filesystem
  • Validates attribute access at multiple nesting levels
  • Verifies correct data type handling for nested structures
  • Checks transform pipeline configuration integrity

Implementation Analysis

The implementation uses Python’s pathlib for file handling and employs a hierarchical configuration validation approach. The test leverages assert statements to verify both the presence of expected attributes and their correct data types, particularly for nested configuration structures.

The testing pattern follows a progressive validation approach, checking from top-level attributes down to nested dictionary structures.

Technical Details

  • Testing Framework: Python’s built-in unittest framework
  • Key Dependencies: pathlib, ColossalAI Config class
  • Test Setup: Uses a sample configuration file in the same directory
  • Configuration Format: Python-based configuration file

Best Practices Demonstrated

The test demonstrates several testing best practices including isolated test cases and comprehensive attribute validation.

  • Progressive assertion checks
  • Clear error messages in assertions
  • Type checking for complex data structures
  • Use of relative path handling for test resources

hpcaitech/colossalai

tests/test_config/test_load_config.py

            
#!/usr/bin/env python
# -*- encoding: utf-8 -*-

from pathlib import Path

from colossalai.context.config import Config


def test_load_config():
    filename = Path(__file__).parent.joinpath("sample_config.py")
    config = Config.from_file(filename)

    assert config.train_data, "cannot access train data as attribute"
    assert config.train_data.dataset, "cannot access grandchild attribute"
    assert isinstance(
        config.train_data.dataset.transform_pipeline[0], dict
    ), f"expected attribute transform_pipeline elements to be a dict, but found {type(config.train_data.dataset.transform_pipeline)}"