Validating Configuration Loading and Attribute Access in ColossalAI
This test suite validates the configuration loading functionality in ColossalAI, focusing on proper attribute access and data structure verification. It ensures the Config class can correctly parse and load configuration files while maintaining hierarchical data access patterns.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_config/test_load_config.py
#!/usr/bin/env python
# -*- encoding: utf-8 -*-
from pathlib import Path
from colossalai.context.config import Config
def test_load_config():
filename = Path(__file__).parent.joinpath("sample_config.py")
config = Config.from_file(filename)
assert config.train_data, "cannot access train data as attribute"
assert config.train_data.dataset, "cannot access grandchild attribute"
assert isinstance(
config.train_data.dataset.transform_pipeline[0], dict
), f"expected attribute transform_pipeline elements to be a dict, but found {type(config.train_data.dataset.transform_pipeline)}"