Back to Repositories

Testing ALBERT Model Splitting and Validation in ColossalAI

This test suite validates the functionality of ALBERT model variants in the ColossalAI framework, specifically focusing on model splitting and output comparison. It tests multiple ALBERT configurations including base model, pre-training, masked language modeling, and classification tasks.

Test Coverage Overview

The test suite provides comprehensive coverage of ALBERT model variants and their transformations.

  • Tests multiple ALBERT model configurations
  • Validates model splitting functionality
  • Verifies output consistency across different architectures
  • Covers key model variants including pre-training and classification tasks

Implementation Analysis

The implementation uses pytest framework with a systematic approach to model testing. It employs a data generation pattern for consistent input tensors and leverages transformers library configurations.

  • Utilizes custom data generation for controlled testing
  • Implements model splitting verification
  • Employs configuration-based model initialization

Technical Details

  • PyTest framework for test organization
  • Transformers library for ALBERT models
  • PyTorch tensor operations
  • Custom utility function split_model_and_compare_output
  • Configurable batch size and sequence length
  • Specific ALBERT configuration parameters

Best Practices Demonstrated

The test implementation showcases several testing best practices for deep learning models.

  • Modular test structure with clear separation of concerns
  • Consistent input data generation
  • Comprehensive model variant coverage
  • Configurable model parameters
  • Systematic output validation

hpcaitech/colossalai

tests/test_fx/test_pipeline/test_hf_model/test_albert.py

            
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output

BATCH_SIZE = 2
SEQ_LENGHT = 16


@pytest.mark.skip("balance split v2 is not ready")
def test_single_sentence_albert():
    MODEL_LIST = [
        transformers.AlbertModel,
        transformers.AlbertForPreTraining,
        transformers.AlbertForMaskedLM,
        transformers.AlbertForSequenceClassification,
        transformers.AlbertForTokenClassification,
    ]

    config = transformers.AlbertConfig(
        vocab_size=100,
        embedding_size=128,
        hidden_size=128,
        num_hidden_layers=2,
        num_attention_heads=4,
        intermediate_size=256,
    )

    def data_gen():
        input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
        token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
        attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
        meta_args = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
        return meta_args

    for model_cls in MODEL_LIST:
        model = model_cls(config=config)
        split_model_and_compare_output(model, data_gen)


if __name__ == "__main__":
    test_single_sentence_albert()