Testing GPT-2 Model Pipeline Implementations in ColossalAI
This test suite validates GPT-2 model variants from the Hugging Face Transformers library within ColossalAI’s pipeline framework. It focuses on ensuring proper model splitting and output consistency across different GPT-2 architectures.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
hpcaitech/colossalai
tests/test_fx/test_pipeline/test_hf_model/test_gpt.py
import pytest
import torch
import transformers
from hf_utils import split_model_and_compare_output
BATCH_SIZE = 64
SEQ_LENGHT = 16
NUM_EPOCHS = 2
NUM_CHUNKS = 1
@pytest.mark.skip("balance split v2 is not ready")
def test_gpt():
MODEL_LIST = [
transformers.GPT2Model,
transformers.GPT2LMHeadModel,
transformers.GPT2DoubleHeadsModel,
transformers.GPT2ForTokenClassification,
# transformers.GPT2ForSequenceClassification, # not supported yet
]
config = transformers.GPT2Config(n_position=64, n_layer=4, n_head=8)
def data_gen():
input_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
token_type_ids = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
attention_mask = torch.zeros((BATCH_SIZE, SEQ_LENGHT), dtype=torch.int64)
kwargs = dict(input_ids=input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)
return kwargs
for model_cls in MODEL_LIST:
model = model_cls(config=config)
split_model_and_compare_output(model, data_gen)
if __name__ == "__main__":
test_gpt()