Back to Repositories

Testing Binary Search Tree Operations Implementation in hello-algo

This test suite validates the core functionality of a Binary Search Tree (BST) implementation in Go, covering essential operations like insertion, deletion, and search. The tests ensure the BST maintains proper ordering and structure while handling various node manipulations.

Test Coverage Overview

The test suite provides comprehensive coverage of Binary Search Tree operations:

  • Tree initialization and root node validation
  • Node insertion with ordered sequence verification
  • Search functionality for existing nodes
  • Node removal with different scenarios (leaf, single child, two children)
  • Edge cases handling during tree modifications

Implementation Analysis

The testing approach utilizes Go’s native testing framework with a focus on sequential operation validation. The implementation follows a structured pattern of setup, operation execution, and state verification, leveraging Go’s testing.T struct for assertion handling.

The test demonstrates proper error handling and state management through systematic tree modifications.

Technical Details

  • Testing Framework: Go’s built-in testing package
  • Test Runner: go test command
  • Assertion Method: Direct value comparison
  • Output Validation: fmt package for visual tree state verification
  • Test Structure: Single comprehensive test function with multiple operation validations

Best Practices Demonstrated

The test implementation showcases several testing best practices in Go:

  • Systematic test case organization
  • Clear setup and initialization procedures
  • Visual state verification for debugging
  • Comprehensive operation sequence testing
  • Proper test function naming and documentation

krahets/hello-algo

codes/go/chapter_tree/binary_search_tree_test.go

            
// File: binary_search_tree_test.go
// Created Time: 2022-11-26
// Author: Reanon ([email protected])

package chapter_tree

import (
	"fmt"
	"testing"
)

func TestBinarySearchTree(t *testing.T) {
	bst := newBinarySearchTree()
	nums := []int{8, 4, 12, 2, 6, 10, 14, 1, 3, 5, 7, 9, 11, 13, 15}
	// 请注意,不同的插入顺序会生成不同的二叉树,该序列可以生成一个完美二叉树
	for _, num := range nums {
		bst.insert(num)
	}
	fmt.Println("\n初始化的二叉树为:")
	bst.print()

	// 获取根节点
	node := bst.getRoot()
	fmt.Println("\n二叉树的根节点为:", node.Val)

	// 查找节点
	node = bst.search(7)
	fmt.Println("查找到的节点对象为", node, ",节点值 =", node.Val)

	// 插入节点
	bst.insert(16)
	fmt.Println("\n插入节点后 16 的二叉树为:")
	bst.print()

	// 删除节点
	bst.remove(1)
	fmt.Println("\n删除节点 1 后的二叉树为:")
	bst.print()
	bst.remove(2)
	fmt.Println("\n删除节点 2 后的二叉树为:")
	bst.print()
	bst.remove(4)
	fmt.Println("\n删除节点 4 后的二叉树为:")
	bst.print()
}