Validating LoRA Token Processing Implementation in Fooocus
This test suite validates the LoRA token parsing functionality in the Fooocus repository, focusing on prompt processing and performance optimization features. It ensures reliable handling of LoRA references and performance configurations across different usage scenarios.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
lllyasviel/fooocus
tests/test_utils.py
import os
import unittest
import modules.flags
from modules import util
class TestUtils(unittest.TestCase):
def test_can_parse_tokens_with_lora(self):
test_cases = [
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 5, True),
"output": (
[('hey-lora.safetensors', 0.4), ('you-lora.safetensors', 0.2)], 'some prompt, very cool, cool'),
},
# Test can not exceed limit
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4>, cool <lora:you-lora:0.2>", [], 1, True),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt, very cool, cool'
),
},
# test Loras from UI take precedence over prompt
{
"input": (
"some prompt, very cool, <lora:l1:0.4>, <lora:l2:-0.2>, <lora:l3:0.3>, <lora:l4:0.5>, <lora:l6:0.24>, <lora:l7:0.1>",
[("hey-lora.safetensors", 0.4)],
5,
True
),
"output": (
[
('hey-lora.safetensors', 0.4),
('l1.safetensors', 0.4),
('l2.safetensors', -0.2),
('l3.safetensors', 0.3),
('l4.safetensors', 0.5)
],
'some prompt, very cool'
)
},
# test correct matching even if there is no space separating loras in the same token
{
"input": ("some prompt, very cool, <lora:hey-lora:0.4><lora:you-lora:0.2>", [], 3, True),
"output": (
[
('hey-lora.safetensors', 0.4),
('you-lora.safetensors', 0.2)
],
'some prompt, very cool'
),
},
# test deduplication, also selected loras are never overridden with loras in prompt
{
"input": (
"some prompt, very cool, <lora:hey-lora:0.4><lora:hey-lora:0.4><lora:you-lora:0.2>",
[('you-lora.safetensors', 0.3)],
3,
True
),
"output": (
[
('you-lora.safetensors', 0.3),
('hey-lora.safetensors', 0.4)
],
'some prompt, very cool'
),
},
{
"input": ("<lora:foo:1..2>, <lora:bar:.>, <test:1.0>, <lora:baz:+> and <lora:quux:>", [], 6, True),
"output": (
[],
'<lora:foo:1..2>, <lora:bar:.>, <test:1.0>, <lora:baz:+> and <lora:quux:>'
)
}
]
for test in test_cases:
prompt, loras, loras_limit, skip_file_check = test["input"]
expected = test["output"]
actual = util.parse_lora_references_from_prompt(prompt, loras, loras_limit=loras_limit,
skip_file_check=skip_file_check)
self.assertEqual(expected, actual)
def test_can_parse_tokens_and_strip_performance_lora(self):
lora_filenames = [
'hey-lora.safetensors',
modules.flags.PerformanceLoRA.EXTREME_SPEED.value,
modules.flags.PerformanceLoRA.LIGHTNING.value,
os.path.join('subfolder', modules.flags.PerformanceLoRA.HYPER_SD.value)
]
test_cases = [
{
"input": ("some prompt, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.QUALITY),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.SPEED),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_lcm_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.EXTREME_SPEED),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_lightning_4step_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.LIGHTNING),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
},
{
"input": ("some prompt, <lora:sdxl_hyper_sd_4step_lora:1>, <lora:hey-lora:0.4>", [], 5, True, modules.flags.Performance.HYPER_SD),
"output": (
[('hey-lora.safetensors', 0.4)],
'some prompt'
),
}
]
for test in test_cases:
prompt, loras, loras_limit, skip_file_check, performance = test["input"]
lora_filenames = modules.util.remove_performance_lora(lora_filenames, performance)
expected = test["output"]
actual = util.parse_lora_references_from_prompt(prompt, loras, loras_limit=loras_limit, lora_filenames=lora_filenames)
self.assertEqual(expected, actual)