Back to Repositories

DeepSpeed Testing: Comprehensive Framework for AI Model Training and Inference Validation

The Microsoft DeepSpeed repository implements a comprehensive testing strategy utilizing both pytest and unittest frameworks. The test suite comprises 189 tests spanning unit and end-to-end testing scenarios, with particular emphasis on verifying critical components like inference kernels, ZeRO optimization, and model training functionality. The testing framework validates complex operations including MoE scatter, tensor fragmentation, and hybrid engine text generation across various model architectures. Qodo Tests Hub provides developers with detailed insights into DeepSpeed's testing patterns, offering a structured way to explore test implementations across different components. Through the platform, developers can analyze how DeepSpeed approaches testing of distributed training features, optimization techniques, and model inference scenarios, learning from real-world examples of testing large-scale AI systems.

Path Test Type Language Description
tests/unit/inference/v2/model_implementations/parameters/test_mapping.py
unit
python This pytest unit test verifies parameter mapping functionality and dependency resolution in DeepSpeed’s inference v2 implementation
tests/unit/inference/v2/modules/test_cuda_pre_ln_module.py
unit
python This PyTest unit test verifies CUDA pre-layer normalization functionality in DeepSpeed’s inference v2 implementation.
tests/unit/runtime/test_autocast.py
unit
python This pytest unit test verifies automatic casting functionality in DeepSpeed’s LinearModuleForZeroStage3 implementation across different precision scenarios.
tests/unit/inference/v2/modules/test_post_ln_module.py
unit
python This pytest unit test verifies the correctness of DeepSpeed’s CUDA-based post-layer normalization module across various tensor dimensions and data types.
tests/unit/inference/v2/modules/test_pre_rms_module.py
unit
python This pytest unit test verifies the Pre-RMS normalization module’s functionality in DeepSpeed’s inference v2 implementation across various tensor configurations and data types.
tests/unit/inference/v2/ragged/test_ragged_wrapper.py
unit
python This pytest unit test verifies the RaggedBatchWrapper functionality for handling variable-length sequence batches in DeepSpeed’s inference pipeline.
tests/unit/launcher/test_run.py
unit
python This pytest unit test verifies DeepSpeed’s resource allocation and node management functionality in the launcher module.
tests/unit/launcher/test_user_args.py
unit
python This pytest unit test verifies DeepSpeed’s argument parsing functionality across various string formats and deployment configurations.
tests/unit/runtime/zero/test_zero_config.py
unit
python This Python unit test verifies DeepSpeed Zero configuration handling, including deprecated fields, aliases, pipeline settings, and offload configurations.
tests/unit/moe/test_moe_tp.py
unit
python This pytest unit test verifies DeepSpeed’s Mixture of Experts (MoE) implementation with tensor parallelism configurations and expert distribution.