Back to Repositories

DeepSpeed Testing: Comprehensive Framework for AI Model Training and Inference Validation

The Microsoft DeepSpeed repository implements a comprehensive testing strategy utilizing both pytest and unittest frameworks. The test suite comprises 189 tests spanning unit and end-to-end testing scenarios, with particular emphasis on verifying critical components like inference kernels, ZeRO optimization, and model training functionality. The testing framework validates complex operations including MoE scatter, tensor fragmentation, and hybrid engine text generation across various model architectures. Qodo Tests Hub provides developers with detailed insights into DeepSpeed's testing patterns, offering a structured way to explore test implementations across different components. Through the platform, developers can analyze how DeepSpeed approaches testing of distributed training features, optimization techniques, and model inference scenarios, learning from real-world examples of testing large-scale AI systems.

Path Test Type Language Description
tests/unit/inference/v2/model_implementations/parameters/test_parameter_list.py
unit
python This pytest unit test verifies parameter list handling and transformation in DeepSpeed’s inference v2 implementation, focusing on MoE layers and mixed parameter lists.
tests/unit/launcher/test_ds_arguments.py
unit
python This pytest unit test verifies DeepSpeed’s argument parsing and configuration management functionality.
tests/unit/inference/v2/model_implementations/sharding/test_mlp_sharding.py
unit
python This pytest unit test verifies MLP parameter sharding functionality for both regular and gated feed-forward networks in DeepSpeed’s inference module.
tests/unit/inference/v2/model_implementations/sharding/test_qkv_sharding.py
unit
python This pytest unit test verifies QKV matrix sharding functionality for attention mechanisms in DeepSpeed’s inference module.
tests/unit/inference/v2/modules/test_blas_linear_module.py
unit
python This pytest unit test verifies BLAS linear module operations with various activation functions and tensor configurations in DeepSpeed’s inference framework.
tests/unit/inference/v2/modules/test_blocked_attn.py
unit
python This pytest unit test verifies blocked attention mechanisms in DeepSpeed’s inference v2 modules with various configurations and optimizations.
tests/unit/inference/v2/modules/test_custom_module.py
unit
python This PyTest unit test verifies custom Layer Normalization module registration and execution in DeepSpeed’s inference v2 framework.
tests/unit/inference/v2/modules/test_cutlass_moe.py
unit
python This PyTest unit test verifies the CUTLASS Mixture of Experts (MoE) implementation in DeepSpeed’s inference v2 module.
tests/unit/inference/v2/modules/test_quantized_linear_module.py
unit
python This pytest unit test verifies FP6 quantized linear operations in DeepSpeed’s inference module with various activation functions and configurations.
tests/unit/inference/v2/ragged/test_blocked_allocator.py
unit
python This pytest unit test verifies the BlockedAllocator component’s memory management functionality in DeepSpeed’s inference V2 module.