Testing DeepSpeed Strategy Integration with PyTorch Lightning in Microsoft/DeepSpeed
This test suite validates the integration between DeepSpeed and PyTorch Lightning using a simple model implementation. It ensures proper functionality of DeepSpeed’s optimization capabilities when used with Lightning’s training framework through a basic linear model and random dataset.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
microsoft/deepspeed
tests/lightning/test_simple.py
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0
# DeepSpeed Team
import torch
from pytorch_lightning import LightningModule, Trainer
from pytorch_lightning.strategies import DeepSpeedStrategy
from torch.utils.data import DataLoader, Dataset
class RandomDataset(Dataset):
def __init__(self, size, length):
self.len = length
self.data = torch.randn(length, size)
def __getitem__(self, index):
return self.data[index]
def __len__(self):
return self.len
class BoringModel(LightningModule):
def __init__(self):
super().__init__()
self.layer = torch.nn.Linear(32, 2)
def forward(self, x):
return self.layer(x)
def training_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("train_loss", loss)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("valid_loss", loss)
def test_step(self, batch, batch_idx):
loss = self(batch).sum()
self.log("test_loss", loss)
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
def train_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def val_dataloader(self):
return DataLoader(RandomDataset(32, 64), batch_size=2)
def test_lightning_model():
"""Test that DeepSpeed works with a simple LightningModule and LightningDataModule."""
model = BoringModel()
trainer = Trainer(strategy=DeepSpeedStrategy(), max_epochs=1, precision=16, accelerator="gpu", devices=1)
trainer.fit(model)