Back to Repositories

Validating Zero Context Parameter Management in DeepSpeed

A comprehensive unit test suite for DeepSpeed’s Zero Context functionality, focusing on parameter gathering, scattering, and memory management in distributed training scenarios. The tests verify Zero Stage 3 optimization behavior and parameter handling across different model configurations.

Test Coverage Overview

The test suite covers critical aspects of DeepSpeed’s Zero Context implementation:
  • Parameter gathering and scattering operations
  • Memory management and parameter persistence
  • Distributed training configurations
  • Zero Stage 3 optimization validation
  • MiCS (Model Parallel with Independent Context Sharding) functionality

Implementation Analysis

The testing approach employs pytest fixtures and distributed test classes to validate Zero Context behavior. Tests utilize custom model implementations and parameter manipulation patterns to verify correct parameter state transitions and memory handling across distributed processes.

Key implementation patterns include context manager validation, parameter status verification, and distributed state synchronization.

Technical Details

Testing infrastructure includes:
  • PyTest framework with distributed test support
  • DeepSpeed Zero optimization configurations
  • Custom model classes (ConvNet, ExtLinear)
  • Distributed environment setup utilities
  • Tensor manipulation and validation tools

Best Practices Demonstrated

The test suite exemplifies robust testing practices through comprehensive coverage of edge cases and failure scenarios. It demonstrates proper isolation of test cases, clear verification of state transitions, and thorough validation of distributed training behaviors.

Notable practices include systematic parameter state verification, proper cleanup of gathered parameters, and validation of memory efficiency.

microsoft/deepspeed

tests/unit/runtime/zero/test_zero_context.py

            
# Copyright (c) Microsoft Corporation.
# SPDX-License-Identifier: Apache-2.0

# DeepSpeed Team

from types import SimpleNamespace

import torch
import pytest
import deepspeed
from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus, partitioned_param_data_shape
import deepspeed.comm as dist
from deepspeed.accelerator import get_accelerator

from unit.common import DistributedTest, preferred_dtype
from unit.simple_model import SimpleModel
from utils import setup_serial_env


# Test that no sub-class or super-class is missed
class ConvX(torch.nn.Conv1d):

    def __init__(self, *args):
        super().__init__(*args)
        # This would not be partitioned before bugfix 5ca8167
        self.param_in = torch.nn.Parameter(torch.FloatTensor(5).uniform_())

    def forward(self, x):
        return x


class ConvNet(torch.nn.Module):

    def __init__(self):
        super().__init__()
        self.conv1 = ConvX(1, 3, 4)
        self.param = torch.nn.Parameter(torch.FloatTensor(5).uniform_())

    def forward(self, x):
        return x


config = {
    "train_batch_size": 1,
    "steps_per_print": 1,
    "optimizer": {
        "type": "Adam",
        "params": {
            "lr": 0.00015
        }
    },
    "zero_optimization": {
        "stage": 3,
        "stage3_param_persistence_threshold": 1,
    }
}

if get_accelerator().is_fp16_supported():
    config["fp16"] = {"enabled": True, "loss_scale": 138.}
elif get_accelerator().is_bf16_supported():
    config["bf16"] = {"enabled": True}


class TestZeroGatheredParametersFree(DistributedTest):
    world_size = 1

    def test(self):
        config_dict = {"train_batch_size": 1, "zero_optimization": {"stage": 3}}
        hidden_dim = 10

        class MyModel(torch.nn.Module):

            def __init__(self, hidden_dim):
                super(MyModel, self).__init__()
                self.l1 = torch.nn.Linear(hidden_dim, hidden_dim)

        with deepspeed.zero.Init(config_dict_or_path=config_dict):
            model = MyModel(hidden_dim)

        with deepspeed.zero.GatheredParameters(list(model.parameters())):
            assert model.l1.weight.numel() != 0, "GatheredParameters should give a non-0-sized tensor"

        # on exit from `GatheredParameters` the gathered params should be freed and not leak memory
        assert model.l1.weight.numel() == 0, "outside of GatheredParameters the param should go back to be 0-sized"


class TestMiCSGatheredParametersFree(DistributedTest):
    world_size = 1

    def test(self):
        config_dict = {"train_batch_size": 1, "zero_optimization": {"stage": 3, "mics_shard_size": 1}}
        hidden_dim = 10

        class MyModel(torch.nn.Module):

            def __init__(self, hidden_dim):
                super(MyModel, self).__init__()
                self.l1 = torch.nn.Linear(hidden_dim, hidden_dim)

        with deepspeed.zero.MiCS_Init(config_dict_or_path=config_dict):
            model = MyModel(hidden_dim)

        with deepspeed.zero.GatheredParameters(list(model.parameters())):
            assert model.l1.weight.numel() != 0, "GatheredParameters should give a non-0-sized tensor"

        # on exit from `GatheredParameters` the gathered params should be freed and not leak memory
        assert model.l1.weight.numel() == 0, "outside of GatheredParameters the param should go back to be 0-sized"


class TestSerialContext(DistributedTest):
    world_size = 1
    init_distributed = False
    set_dist_env = False

    def test_subclass_param(self):
        setup_serial_env()
        with deepspeed.zero.Init(config=config):
            model = ConvNet()

        assert model.param.ds_status == ZeroParamStatus.NOT_AVAILABLE
        assert model.conv1.param_in.ds_status == ZeroParamStatus.NOT_AVAILABLE

    def test_scattered_init_dist(self):
        setup_serial_env()
        assert not dist.is_initialized()
        with deepspeed.zero.Init():
            assert dist.is_initialized()

    def test_scatter_halftype(self):
        if not get_accelerator().is_fp16_supported():
            pytest.skip("fp16 is not supported")
        setup_serial_env()

        with deepspeed.zero.Init():
            l = torch.nn.Linear(10, 10)
            assert l.weight.ds_tensor.dtype == torch.float16

            y = torch.LongTensor([3, 3])
            assert y.dtype == torch.long

    def test_throughput_calculation(self):
        setup_serial_env()

        train_micro_batch_size_per_gpu = 7
        gradient_accumulation_steps = 6
        config_dict = {
            "train_micro_batch_size_per_gpu": train_micro_batch_size_per_gpu,
            "gradient_accumulation_steps": gradient_accumulation_steps,
            "optimizer": {
                "type": "Adam",
                "params": {
                    "lr": 0.001,
                }
            },
            "zero_optimization": {
                "stage": 0
            },
        }

        args = SimpleNamespace(local_rank=0)
        net = SimpleModel(hidden_dim=4)
        engine, _, _, _ = deepspeed.initialize(args=args,
                                               config=config_dict,
                                               model=net,
                                               model_parameters=net.parameters())
        assert engine.tput_timer.batch_size == train_micro_batch_size_per_gpu * gradient_accumulation_steps

        assert not engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_step == 2
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling stop() while uninitialized - has no effect
        engine.tput_timer.stop()
        assert not engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # any call to start() (from dataloader or not) initializes the timer
        engine.tput_timer.start()
        assert engine.tput_timer.initialized
        assert engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 0
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling stop() after initialized - increments the local micro step counter
        engine.tput_timer.stop()
        assert engine.tput_timer.initialized
        assert not engine.tput_timer.started
        assert engine.tput_timer.start_time == 0
        assert engine.tput_timer.micro_step_count == 1
        assert engine.tput_timer.global_step_count == 0
        assert engine.tput_timer.total_elapsed_time == 0

        # calling start()/stop() to increment the step counter until start_step
        while engine.tput_timer.micro_step_count < (gradient_accumulation_steps * engine.tput_timer.start_step):
            engine.tput_timer.start()
            global_step = (engine.tput_timer.micro_step_count + 1) % gradient_accumulation_steps == 0
            engine.tput_timer.stop(global_step=global_step)
        assert engine.tput_timer.global_step_count == engine.tput_timer.start_step
        assert engine.tput_timer.total_elapsed_time == 0

        # calling start()/stop() accumulates duration during gradient accumulation
        while engine.tput_timer.global_step_count == engine.tput_timer.start_step:
            engine.tput_timer.start()
            current_duration = engine.tput_timer.step_elapsed_time
            total_duration = engine.tput_timer.total_elapsed_time

            global_step = (engine.tput_timer.micro_step_count + 1) % gradient_accumulation_steps == 0
            engine.tput_timer.stop(global_step=global_step)
            duration = engine.tput_timer.end_time - engine.tput_timer.start_time
            # step elapsed time is reset after gradient accumulation steps
            assert engine.tput_timer.step_elapsed_time == (0 if engine.tput_timer.global_step_count
                                                           != engine.tput_timer.start_step else current_duration +
                                                           duration)
            assert engine.tput_timer.total_elapsed_time == total_duration + duration

    def test_ext_param_getattr(self):
        setup_serial_env()

        class ExtLinear(torch.nn.Module):

            def __init__(self, dim=16):
                super().__init__()
                self.dim = dim
                self.linear1 = torch.nn.Linear(dim, dim)
                self.linear2 = torch.nn.Linear(dim, dim)

            def forward(self, input):
                A = self.linear1(input)
                B = self.linear2(A)

                # external use of self.linear1.weight
                C = torch.nn.functional.linear(B, self.linear1.weight)
                return C.sum()

        net = ExtLinear()

        args = SimpleNamespace(local_rank=0)
        engine, optim, _, _ = deepspeed.initialize(args=args,
                                                   model=net,
                                                   model_parameters=net.parameters(),
                                                   config=config)

        with deepspeed.zero.GatheredParameters(net.linear1.weight):
            assert net.linear1.weight.numel() == net.dim**2

        input = torch.rand(net.dim).to(engine.device).to(preferred_dtype())
        loss = engine(input)
        engine.backward(loss)
        engine.step()


class TestScatterGather(DistributedTest):
    world_size = 2

    def test(self):
        with deepspeed.zero.Init():
            l = torch.nn.Linear(6, 3)
        assert l.weight.ds_status == ZeroParamStatus.NOT_AVAILABLE
        assert l.weight.shape == torch.Size(partitioned_param_data_shape)

        # Ensure there is no impact outside the context
        l2 = torch.nn.Linear(6, 3)
        assert not hasattr(l2.weight, 'ds_status')
        assert l2.weight.numel() == l2.in_features * l2.out_features

        with deepspeed.zero.GatheredParameters(l.weight):
            assert l.weight.ds_status == ZeroParamStatus.AVAILABLE
            assert l.weight.numel() == l.in_features * l.out_features


class TestGatherUpdate(DistributedTest):
    world_size = 2

    def test(self):
        with deepspeed.zero.Init():
            l = torch.nn.Linear(4, 2)
        assert l.weight.ds_status == ZeroParamStatus.NOT_AVAILABLE

        # Gather and make a change
        with deepspeed.zero.GatheredParameters(l.weight, modifier_rank=1):
            assert l.weight.ds_status == ZeroParamStatus.AVAILABLE
            if dist.get_rank() == 1:
                with torch.no_grad():
                    l.weight.zero_()

        # should now be scattered again

        # Now gather again and ensure the change is global
        with deepspeed.zero.GatheredParameters(l.weight):
            # all ranks compare
            assert torch.equal(l.weight, torch.zeros_like(l.weight))