Testing Synchronous Vectorized Environment Implementation in OpenAI Gym
This test suite validates the SyncVectorEnv implementation in OpenAI Gym, focusing on synchronous vectorized environment functionality. The tests ensure proper handling of multiple environments running in parallel while maintaining synchronized execution and consistent state management.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
openai/gym
tests/vector/test_sync_vector_env.py
import numpy as np
import pytest
from gym.envs.registration import EnvSpec
from gym.spaces import Box, Discrete, MultiDiscrete, Tuple
from gym.vector.sync_vector_env import SyncVectorEnv
from tests.envs.utils import all_testing_env_specs
from tests.vector.utils import (
CustomSpace,
assert_rng_equal,
make_custom_space_env,
make_env,
)
def test_create_sync_vector_env():
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
env = SyncVectorEnv(env_fns)
env.close()
assert env.num_envs == 8
def test_reset_sync_vector_env():
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
env = SyncVectorEnv(env_fns)
observations, infos = env.reset()
env.close()
assert isinstance(env.observation_space, Box)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
del observations
@pytest.mark.parametrize("use_single_action_space", [True, False])
def test_step_sync_vector_env(use_single_action_space):
env_fns = [make_env("FrozenLake-v1", i) for i in range(8)]
env = SyncVectorEnv(env_fns)
observations = env.reset()
assert isinstance(env.single_action_space, Discrete)
assert isinstance(env.action_space, MultiDiscrete)
if use_single_action_space:
actions = [env.single_action_space.sample() for _ in range(8)]
else:
actions = env.action_space.sample()
observations, rewards, terminateds, truncateds, _ = env.step(actions)
env.close()
assert isinstance(env.observation_space, MultiDiscrete)
assert isinstance(observations, np.ndarray)
assert observations.dtype == env.observation_space.dtype
assert observations.shape == (8,) + env.single_observation_space.shape
assert observations.shape == env.observation_space.shape
assert isinstance(rewards, np.ndarray)
assert isinstance(rewards[0], (float, np.floating))
assert rewards.ndim == 1
assert rewards.size == 8
assert isinstance(terminateds, np.ndarray)
assert terminateds.dtype == np.bool_
assert terminateds.ndim == 1
assert terminateds.size == 8
assert isinstance(truncateds, np.ndarray)
assert truncateds.dtype == np.bool_
assert truncateds.ndim == 1
assert truncateds.size == 8
def test_call_sync_vector_env():
env_fns = [
make_env("CartPole-v1", i, render_mode="rgb_array_list") for i in range(4)
]
env = SyncVectorEnv(env_fns)
_ = env.reset()
images = env.call("render")
gravity = env.call("gravity")
env.close()
assert isinstance(images, tuple)
assert len(images) == 4
for i in range(4):
assert len(images[i]) == 1
assert isinstance(images[i][0], np.ndarray)
assert isinstance(gravity, tuple)
assert len(gravity) == 4
for i in range(4):
assert isinstance(gravity[i], float)
assert gravity[i] == 9.8
def test_set_attr_sync_vector_env():
env_fns = [make_env("CartPole-v1", i) for i in range(4)]
env = SyncVectorEnv(env_fns)
env.set_attr("gravity", [9.81, 3.72, 8.87, 1.62])
gravity = env.get_attr("gravity")
assert gravity == (9.81, 3.72, 8.87, 1.62)
env.close()
def test_check_spaces_sync_vector_env():
# CartPole-v1 - observation_space: Box(4,), action_space: Discrete(2)
env_fns = [make_env("CartPole-v1", i) for i in range(8)]
# FrozenLake-v1 - Discrete(16), action_space: Discrete(4)
env_fns[1] = make_env("FrozenLake-v1", 1)
with pytest.raises(RuntimeError):
env = SyncVectorEnv(env_fns)
env.close()
def test_custom_space_sync_vector_env():
env_fns = [make_custom_space_env(i) for i in range(4)]
env = SyncVectorEnv(env_fns)
reset_observations, infos = env.reset()
assert isinstance(env.single_action_space, CustomSpace)
assert isinstance(env.action_space, Tuple)
actions = ("action-2", "action-3", "action-5", "action-7")
step_observations, rewards, terminateds, truncateds, _ = env.step(actions)
env.close()
assert isinstance(env.single_observation_space, CustomSpace)
assert isinstance(env.observation_space, Tuple)
assert isinstance(reset_observations, tuple)
assert reset_observations == ("reset", "reset", "reset", "reset")
assert isinstance(step_observations, tuple)
assert step_observations == (
"step(action-2)",
"step(action-3)",
"step(action-5)",
"step(action-7)",
)
def test_sync_vector_env_seed():
env = make_env("BipedalWalker-v3", seed=123)()
sync_vector_env = SyncVectorEnv([make_env("BipedalWalker-v3", seed=123)])
assert_rng_equal(env.action_space.np_random, sync_vector_env.action_space.np_random)
for _ in range(100):
env_action = env.action_space.sample()
vector_action = sync_vector_env.action_space.sample()
assert np.all(env_action == vector_action)
@pytest.mark.parametrize(
"spec", all_testing_env_specs, ids=[spec.id for spec in all_testing_env_specs]
)
def test_sync_vector_determinism(spec: EnvSpec, seed: int = 123, n: int = 3):
"""Check that for all environments, the sync vector envs produce the same action samples using the same seeds"""
env_1 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
env_2 = SyncVectorEnv([make_env(spec.id, seed=seed) for _ in range(n)])
assert_rng_equal(env_1.action_space.np_random, env_2.action_space.np_random)
for _ in range(100):
env_1_samples = env_1.action_space.sample()
env_2_samples = env_2.action_space.sample()
assert np.all(env_1_samples == env_2_samples)