Back to Repositories

Testing GrayScale Observation Wrapper Implementation in OpenAI Gym

This test suite validates the GrayScaleObservation wrapper functionality in OpenAI Gym environments, specifically focusing on RGB to grayscale conversion. The tests ensure proper observation space transformation and dimensional handling for reinforcement learning environments.

Test Coverage Overview

The test suite provides comprehensive coverage of the GrayScaleObservation wrapper functionality.

Key areas tested include:
  • Observation space type validation
  • RGB to grayscale conversion verification
  • Dimensional preservation options (keep_dim parameter)
  • Space constraints compliance

Implementation Analysis

The testing approach utilizes pytest’s parametrize feature to test multiple configurations of the GrayScaleObservation wrapper. The implementation validates both the observation space transformation and actual observation values using the CarRacing-v2 environment as a test case.

Technical patterns include:
  • Parametrized test cases for different dimensional settings
  • Space type assertions
  • Shape validation for both 2D and 3D outputs

Technical Details

Testing tools and configuration:
  • pytest framework for test organization
  • gym.spaces for observation space validation
  • GrayScaleObservation wrapper from gym.wrappers
  • CarRacing-v2 environment for integration testing
  • Parametrized testing with keep_dim boolean variations

Best Practices Demonstrated

The test implementation showcases several testing best practices in reinforcement learning environment validation.

Notable practices include:
  • Systematic space and type checking
  • Comprehensive dimensional validation
  • Parameter variation testing
  • Clear separation of setup and assertions
  • Efficient test case organization using pytest features

openai/gym

tests/wrappers/test_gray_scale_observation.py

            
import pytest

import gym
from gym import spaces
from gym.wrappers import GrayScaleObservation


@pytest.mark.parametrize("env_id", ["CarRacing-v2"])
@pytest.mark.parametrize("keep_dim", [True, False])
def test_gray_scale_observation(env_id, keep_dim):
    rgb_env = gym.make(env_id, disable_env_checker=True)

    assert isinstance(rgb_env.observation_space, spaces.Box)
    assert len(rgb_env.observation_space.shape) == 3
    assert rgb_env.observation_space.shape[-1] == 3

    wrapped_env = GrayScaleObservation(rgb_env, keep_dim=keep_dim)
    assert isinstance(wrapped_env.observation_space, spaces.Box)
    if keep_dim:
        assert len(wrapped_env.observation_space.shape) == 3
        assert wrapped_env.observation_space.shape[-1] == 1
    else:
        assert len(wrapped_env.observation_space.shape) == 2

    wrapped_obs, info = wrapped_env.reset()
    assert wrapped_obs in wrapped_env.observation_space