Testing Audio Processing Implementation in OpenAI Whisper
This test suite validates the audio processing functionality in Whisper’s audio module, focusing on loading audio files and generating mel spectrograms. It ensures proper audio file handling, signal processing, and spectrogram generation for speech recognition tasks.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
openai/whisper
tests/test_audio.py
import os.path
import numpy as np
from whisper.audio import SAMPLE_RATE, load_audio, log_mel_spectrogram
def test_audio():
audio_path = os.path.join(os.path.dirname(__file__), "jfk.flac")
audio = load_audio(audio_path)
assert audio.ndim == 1
assert SAMPLE_RATE * 10 < audio.shape[0] < SAMPLE_RATE * 12
assert 0 < audio.std() < 1
mel_from_audio = log_mel_spectrogram(audio)
mel_from_file = log_mel_spectrogram(audio_path)
assert np.allclose(mel_from_audio, mel_from_file)
assert mel_from_audio.max() - mel_from_audio.min() <= 2.0