Testing Multilingual Tokenizer Implementation in OpenAI Whisper
This test suite validates the Whisper tokenizer functionality, focusing on multilingual support, token encoding/decoding, and Unicode handling. The tests ensure proper tokenization across different languages and character sets while maintaining text integrity.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
openai/whisper
tests/test_tokenizer.py
import pytest
from whisper.tokenizer import get_tokenizer
@pytest.mark.parametrize("multilingual", [True, False])
def test_tokenizer(multilingual):
tokenizer = get_tokenizer(multilingual=False)
assert tokenizer.sot in tokenizer.sot_sequence
assert len(tokenizer.all_language_codes) == len(tokenizer.all_language_tokens)
assert all(c < tokenizer.timestamp_begin for c in tokenizer.all_language_tokens)
def test_multilingual_tokenizer():
gpt2_tokenizer = get_tokenizer(multilingual=False)
multilingual_tokenizer = get_tokenizer(multilingual=True)
text = "다람쥐 헌 쳇바퀴에 타고파"
gpt2_tokens = gpt2_tokenizer.encode(text)
multilingual_tokens = multilingual_tokenizer.encode(text)
assert gpt2_tokenizer.decode(gpt2_tokens) == text
assert multilingual_tokenizer.decode(multilingual_tokens) == text
assert len(gpt2_tokens) > len(multilingual_tokens)
def test_split_on_unicode():
multilingual_tokenizer = get_tokenizer(multilingual=True)
tokens = [8404, 871, 287, 6, 246, 526, 3210, 20378]
words, word_tokens = multilingual_tokenizer.split_tokens_on_unicode(tokens)
assert words == [" elle", " est", " l", "'", "\ufffd", "é", "rit", "oire"]
assert word_tokens == [[8404], [871], [287], [6], [246], [526], [3210], [20378]]