Back to Repositories

Testing Custom ReLU Operator Implementation in PaddleOCR

This test suite validates a custom ReLU (Rectified Linear Unit) operator implementation for PaddleOCR, supporting both CPU and GPU execution. The tests verify forward and backward propagation functionality with comprehensive error handling and type dispatching.

Test Coverage Overview

The test coverage encompasses both CPU and GPU implementations of the ReLU operator.

  • Forward propagation testing on CPU/GPU platforms
  • Backward propagation gradient computation verification
  • Data type dispatch handling for floating point types
  • Platform-specific implementation validation

Implementation Analysis

The testing approach implements a dual-path verification strategy for CPU and GPU kernels. It utilizes PaddlePaddle’s extension framework to register custom operators and their gradients, with specialized kernel functions for different compute devices.

  • Template-based kernel implementations
  • Dynamic dispatch mechanisms for data types
  • Error boundary testing for unsupported platforms

Technical Details

  • PaddlePaddle Extension API integration
  • Custom operator registration macros
  • Template-based floating-point type handling
  • Memory management for tensor operations
  • Platform-specific kernel dispatch system

Best Practices Demonstrated

The implementation showcases robust error handling and platform abstraction patterns.

  • Clear separation of CPU/GPU implementations
  • Consistent error handling across platforms
  • Efficient memory management practices
  • Type-safe template implementations

paddlepaddle/paddleocr

test_tipc/supplementary/custom_op/custom_relu_op.cc

            
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

// reference from :
// https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cc
#include <iostream>
#include <vector>

#include "paddle/extension.h"

template <typename data_t>
void relu_cpu_forward_kernel(const data_t *x_data, data_t *out_data,
                             int64_t x_numel) {
  for (int i = 0; i < x_numel; ++i) {
    out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
  }
}

template <typename data_t>
void relu_cpu_backward_kernel(const data_t *grad_out_data,
                              const data_t *out_data, data_t *grad_x_data,
                              int64_t out_numel) {
  for (int i = 0; i < out_numel; ++i) {
    grad_x_data[i] =
        grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
  }
}

std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor &x) {
  auto out = paddle::Tensor(paddle::PlaceType::kCPU);

  out.reshape(x.shape());
  PD_DISPATCH_FLOATING_TYPES(
      x.type(), "relu_cpu_forward", ([&] {
        relu_cpu_forward_kernel<data_t>(
            x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
      }));

  return {out};
}

std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor &x,
                                              const paddle::Tensor &out,
                                              const paddle::Tensor &grad_out) {
  auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
  grad_x.reshape(x.shape());

  PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
                               relu_cpu_backward_kernel<data_t>(
                                   grad_out.data<data_t>(), out.data<data_t>(),
                                   grad_x.mutable_data<data_t>(x.place()),
                                   out.size());
                             }));

  return {grad_x};
}

std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor &x);
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor &x,
                                               const paddle::Tensor &out,
                                               const paddle::Tensor &grad_out);

std::vector<paddle::Tensor> ReluForward(const paddle::Tensor &x) {
  // TODO(chenweihang): Check Input
  if (x.place() == paddle::PlaceType::kCPU) {
    return relu_cpu_forward(x);
  } else if (x.place() == paddle::PlaceType::kGPU) {
    return relu_cuda_forward(x);
  } else {
    throw std::runtime_error("Not implemented.");
  }
}

std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor &x,
                                         const paddle::Tensor &out,
                                         const paddle::Tensor &grad_out) {
  // TODO(chenweihang): Check Input
  if (x.place() == paddle::PlaceType::kCPU) {
    return relu_cpu_backward(x, out, grad_out);
  } else if (x.place() == paddle::PlaceType::kGPU) {
    return relu_cuda_backward(x, out, grad_out);
  } else {
    throw std::runtime_error("Not implemented.");
  }
}

PD_BUILD_OP(custom_relu)
    .Inputs({"X"})
    .Outputs({"Out"})
    .SetKernelFn(PD_KERNEL(ReluForward));

PD_BUILD_GRAD_OP(custom_relu)
    .Inputs({"X", "Out", paddle::Grad("Out")})
    .Outputs({paddle::Grad("X")})
    .SetKernelFn(PD_KERNEL(ReluBackward));