Testing Custom ReLU Operator Implementation in PaddleOCR
This test suite validates a custom ReLU (Rectified Linear Unit) operator implementation for PaddleOCR, supporting both CPU and GPU execution. The tests verify forward and backward propagation functionality with comprehensive error handling and type dispatching.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
paddlepaddle/paddleocr
test_tipc/supplementary/custom_op/custom_relu_op.cc
// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference from :
// https://github.com/PaddlePaddle/Paddle-Inference-Demo/blob/master/python/custom-operator/custom_relu_op.cc
#include <iostream>
#include <vector>
#include "paddle/extension.h"
template <typename data_t>
void relu_cpu_forward_kernel(const data_t *x_data, data_t *out_data,
int64_t x_numel) {
for (int i = 0; i < x_numel; ++i) {
out_data[i] = std::max(static_cast<data_t>(0.), x_data[i]);
}
}
template <typename data_t>
void relu_cpu_backward_kernel(const data_t *grad_out_data,
const data_t *out_data, data_t *grad_x_data,
int64_t out_numel) {
for (int i = 0; i < out_numel; ++i) {
grad_x_data[i] =
grad_out_data[i] * (out_data[i] > static_cast<data_t>(0) ? 1. : 0.);
}
}
std::vector<paddle::Tensor> relu_cpu_forward(const paddle::Tensor &x) {
auto out = paddle::Tensor(paddle::PlaceType::kCPU);
out.reshape(x.shape());
PD_DISPATCH_FLOATING_TYPES(
x.type(), "relu_cpu_forward", ([&] {
relu_cpu_forward_kernel<data_t>(
x.data<data_t>(), out.mutable_data<data_t>(x.place()), x.size());
}));
return {out};
}
std::vector<paddle::Tensor> relu_cpu_backward(const paddle::Tensor &x,
const paddle::Tensor &out,
const paddle::Tensor &grad_out) {
auto grad_x = paddle::Tensor(paddle::PlaceType::kCPU);
grad_x.reshape(x.shape());
PD_DISPATCH_FLOATING_TYPES(out.type(), "relu_cpu_backward", ([&] {
relu_cpu_backward_kernel<data_t>(
grad_out.data<data_t>(), out.data<data_t>(),
grad_x.mutable_data<data_t>(x.place()),
out.size());
}));
return {grad_x};
}
std::vector<paddle::Tensor> relu_cuda_forward(const paddle::Tensor &x);
std::vector<paddle::Tensor> relu_cuda_backward(const paddle::Tensor &x,
const paddle::Tensor &out,
const paddle::Tensor &grad_out);
std::vector<paddle::Tensor> ReluForward(const paddle::Tensor &x) {
// TODO(chenweihang): Check Input
if (x.place() == paddle::PlaceType::kCPU) {
return relu_cpu_forward(x);
} else if (x.place() == paddle::PlaceType::kGPU) {
return relu_cuda_forward(x);
} else {
throw std::runtime_error("Not implemented.");
}
}
std::vector<paddle::Tensor> ReluBackward(const paddle::Tensor &x,
const paddle::Tensor &out,
const paddle::Tensor &grad_out) {
// TODO(chenweihang): Check Input
if (x.place() == paddle::PlaceType::kCPU) {
return relu_cpu_backward(x, out, grad_out);
} else if (x.place() == paddle::PlaceType::kGPU) {
return relu_cuda_backward(x, out, grad_out);
} else {
throw std::runtime_error("Not implemented.");
}
}
PD_BUILD_OP(custom_relu)
.Inputs({"X"})
.Outputs({"Out"})
.SetKernelFn(PD_KERNEL(ReluForward));
PD_BUILD_GRAD_OP(custom_relu)
.Inputs({"X", "Out", paddle::Grad("Out")})
.Outputs({paddle::Grad("X")})
.SetKernelFn(PD_KERNEL(ReluBackward));