Back to Repositories

Testing MobileNetV3 Model Implementations in PaddleOCR

This test suite implements and validates MobileNetV3 model variants in PaddleOCR, focusing on model architecture, custom operations, and distillation capabilities. The test code verifies different configurations of MobileNetV3 including small/large variants, scaling factors, and specialized implementations like Siamese networks.

Test Coverage Overview

The test coverage encompasses core MobileNetV3 functionality including:
  • Model variant initialization (small/large) with different scale factors
  • Custom relu operations integration
  • Distillation model configurations
  • Siamese network architecture validation
  • Layer components like ConvBNLayer and SEModule

Implementation Analysis

The testing approach utilizes PaddlePaddle’s neural network modules to validate model architectures. It implements specialized model variants through inheritance and composition, with custom operations compiled using JIT. The tests verify both standard and specialized implementations like distillation and Siamese networks.

Technical Details

  • PaddlePaddle neural network framework
  • Custom JIT-compiled operations
  • Model configuration handling
  • Layer-wise validation capabilities
  • Distillation and Siamese network support

Best Practices Demonstrated

The test implementation showcases several best practices:
  • Modular model architecture design
  • Flexible configuration management
  • Custom operation integration
  • Reusable component architecture
  • Clear separation of model variants

paddlepaddle/paddleocr

test_tipc/supplementary/mv3.py

            
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.functional import hardswish, hardsigmoid
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddle.regularizer import L2Decay
import math

from paddle.utils.cpp_extension import load

# jit compile custom op
custom_ops = load(
    name="custom_jit_ops",
    sources=["./custom_op/custom_relu_op.cc", "./custom_op/custom_relu_op.cu"],
)


def make_divisible(v, divisor=8, min_value=None):
    if min_value is None:
        min_value = divisor
    new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
    if new_v < 0.9 * v:
        new_v += divisor
    return new_v


class MobileNetV3(nn.Layer):
    def __init__(
        self,
        scale=1.0,
        model_name="small",
        dropout_prob=0.2,
        class_dim=1000,
        use_custom_relu=False,
    ):
        super(MobileNetV3, self).__init__()
        self.use_custom_relu = use_custom_relu

        inplanes = 16
        if model_name == "large":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, False, "relu", 1],
                [3, 64, 24, False, "relu", 2],
                [3, 72, 24, False, "relu", 1],
                [5, 72, 40, True, "relu", 2],
                [5, 120, 40, True, "relu", 1],
                [5, 120, 40, True, "relu", 1],
                [3, 240, 80, False, "hardswish", 2],
                [3, 200, 80, False, "hardswish", 1],
                [3, 184, 80, False, "hardswish", 1],
                [3, 184, 80, False, "hardswish", 1],
                [3, 480, 112, True, "hardswish", 1],
                [3, 672, 112, True, "hardswish", 1],
                [5, 672, 160, True, "hardswish", 2],
                [5, 960, 160, True, "hardswish", 1],
                [5, 960, 160, True, "hardswish", 1],
            ]
            self.cls_ch_squeeze = 960
            self.cls_ch_expand = 1280
        elif model_name == "small":
            self.cfg = [
                # k, exp, c,  se,     nl,  s,
                [3, 16, 16, True, "relu", 2],
                [3, 72, 24, False, "relu", 2],
                [3, 88, 24, False, "relu", 1],
                [5, 96, 40, True, "hardswish", 2],
                [5, 240, 40, True, "hardswish", 1],
                [5, 240, 40, True, "hardswish", 1],
                [5, 120, 48, True, "hardswish", 1],
                [5, 144, 48, True, "hardswish", 1],
                [5, 288, 96, True, "hardswish", 2],
                [5, 576, 96, True, "hardswish", 1],
                [5, 576, 96, True, "hardswish", 1],
            ]
            self.cls_ch_squeeze = 576
            self.cls_ch_expand = 1280
        else:
            raise NotImplementedError(
                "mode[{}_model] is not implemented!".format(model_name)
            )

        self.conv1 = ConvBNLayer(
            in_c=3,
            out_c=make_divisible(inplanes * scale),
            filter_size=3,
            stride=2,
            padding=1,
            num_groups=1,
            if_act=True,
            act="hardswish",
            name="conv1",
            use_custom_relu=self.use_custom_relu,
        )

        self.block_list = []
        i = 0
        inplanes = make_divisible(inplanes * scale)
        for k, exp, c, se, nl, s in self.cfg:
            block = self.add_sublayer(
                "conv" + str(i + 2),
                ResidualUnit(
                    in_c=inplanes,
                    mid_c=make_divisible(scale * exp),
                    out_c=make_divisible(scale * c),
                    filter_size=k,
                    stride=s,
                    use_se=se,
                    act=nl,
                    name="conv" + str(i + 2),
                    use_custom_relu=self.use_custom_relu,
                ),
            )
            self.block_list.append(block)
            inplanes = make_divisible(scale * c)
            i += 1

        self.last_second_conv = ConvBNLayer(
            in_c=inplanes,
            out_c=make_divisible(scale * self.cls_ch_squeeze),
            filter_size=1,
            stride=1,
            padding=0,
            num_groups=1,
            if_act=True,
            act="hardswish",
            name="conv_last",
            use_custom_relu=self.use_custom_relu,
        )

        self.pool = AdaptiveAvgPool2D(1)

        self.last_conv = Conv2D(
            in_channels=make_divisible(scale * self.cls_ch_squeeze),
            out_channels=self.cls_ch_expand,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(),
            bias_attr=False,
        )

        self.dropout = Dropout(p=dropout_prob, mode="downscale_in_infer")

        self.out = Linear(
            self.cls_ch_expand,
            class_dim,
            weight_attr=ParamAttr(),
            bias_attr=ParamAttr(),
        )

    def forward(self, inputs, label=None):
        x = self.conv1(inputs)

        for block in self.block_list:
            x = block(x)

        x = self.last_second_conv(x)
        x = self.pool(x)

        x = self.last_conv(x)
        x = hardswish(x)
        x = self.dropout(x)
        x = paddle.flatten(x, start_axis=1, stop_axis=-1)
        x = self.out(x)
        return x


class ConvBNLayer(nn.Layer):
    def __init__(
        self,
        in_c,
        out_c,
        filter_size,
        stride,
        padding,
        num_groups=1,
        if_act=True,
        act=None,
        use_cudnn=True,
        name="",
        use_custom_relu=False,
    ):
        super(ConvBNLayer, self).__init__()
        self.if_act = if_act
        self.act = act
        self.conv = Conv2D(
            in_channels=in_c,
            out_channels=out_c,
            kernel_size=filter_size,
            stride=stride,
            padding=padding,
            groups=num_groups,
            weight_attr=ParamAttr(),
            bias_attr=False,
        )
        self.bn = BatchNorm(
            num_channels=out_c,
            act=None,
            param_attr=ParamAttr(regularizer=L2Decay(0.0)),
            bias_attr=ParamAttr(regularizer=L2Decay(0.0)),
        )
        # moving_mean_name=name + "_bn_mean",
        # moving_variance_name=name + "_bn_variance")

        self.use_custom_relu = use_custom_relu

    def forward(self, x):
        x = self.conv(x)
        x = self.bn(x)
        if self.if_act:
            if self.act == "relu":
                if self.use_custom_relu:
                    x = custom_ops.custom_relu(x)
                else:
                    x = F.relu(x)
            elif self.act == "hardswish":
                x = hardswish(x)
            else:
                print("The activation function is selected incorrectly.")
                exit()
        return x


class ResidualUnit(nn.Layer):
    def __init__(
        self,
        in_c,
        mid_c,
        out_c,
        filter_size,
        stride,
        use_se,
        act=None,
        name="",
        use_custom_relu=False,
    ):
        super(ResidualUnit, self).__init__()
        self.if_shortcut = stride == 1 and in_c == out_c
        self.if_se = use_se

        self.use_custom_relu = use_custom_relu

        self.expand_conv = ConvBNLayer(
            in_c=in_c,
            out_c=mid_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=True,
            act=act,
            name=name + "_expand",
            use_custom_relu=self.use_custom_relu,
        )
        self.bottleneck_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=mid_c,
            filter_size=filter_size,
            stride=stride,
            padding=int((filter_size - 1) // 2),
            num_groups=mid_c,
            if_act=True,
            act=act,
            name=name + "_depthwise",
            use_custom_relu=self.use_custom_relu,
        )
        if self.if_se:
            self.mid_se = SEModule(mid_c, name=name + "_se")
        self.linear_conv = ConvBNLayer(
            in_c=mid_c,
            out_c=out_c,
            filter_size=1,
            stride=1,
            padding=0,
            if_act=False,
            act=None,
            name=name + "_linear",
            use_custom_relu=self.use_custom_relu,
        )

    def forward(self, inputs):
        x = self.expand_conv(inputs)
        x = self.bottleneck_conv(x)
        if self.if_se:
            x = self.mid_se(x)
        x = self.linear_conv(x)
        if self.if_shortcut:
            x = paddle.add(inputs, x)
        return x


class SEModule(nn.Layer):
    def __init__(self, channel, reduction=4, name=""):
        super(SEModule, self).__init__()
        self.avg_pool = AdaptiveAvgPool2D(1)
        self.conv1 = Conv2D(
            in_channels=channel,
            out_channels=channel // reduction,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(),
            bias_attr=ParamAttr(),
        )
        self.conv2 = Conv2D(
            in_channels=channel // reduction,
            out_channels=channel,
            kernel_size=1,
            stride=1,
            padding=0,
            weight_attr=ParamAttr(),
            bias_attr=ParamAttr(),
        )

    def forward(self, inputs):
        outputs = self.avg_pool(inputs)
        outputs = self.conv1(outputs)
        outputs = F.relu(outputs)
        outputs = self.conv2(outputs)
        outputs = hardsigmoid(outputs, slope=0.2, offset=0.5)
        return paddle.multiply(x=inputs, y=outputs)


def MobileNetV3_small_x0_35(**args):
    model = MobileNetV3(model_name="small", scale=0.35, **args)
    return model


def MobileNetV3_small_x0_5(**args):
    model = MobileNetV3(model_name="small", scale=0.5, **args)
    return model


def MobileNetV3_small_x0_75(**args):
    model = MobileNetV3(model_name="small", scale=0.75, **args)
    return model


def MobileNetV3_small_x1_0(**args):
    model = MobileNetV3(model_name="small", scale=1.0, **args)
    return model


def MobileNetV3_small_x1_25(**args):
    model = MobileNetV3(model_name="small", scale=1.25, **args)
    return model


def MobileNetV3_large_x0_35(**args):
    model = MobileNetV3(model_name="large", scale=0.35, **args)
    return model


def MobileNetV3_large_x0_5(**args):
    model = MobileNetV3(model_name="large", scale=0.5, **args)
    return model


def MobileNetV3_large_x0_75(**args):
    model = MobileNetV3(model_name="large", scale=0.75, **args)
    return model


def MobileNetV3_large_x1_0(**args):
    model = MobileNetV3(model_name="large", scale=1.0, **args)
    return model


def MobileNetV3_large_x1_25(**args):
    model = MobileNetV3(model_name="large", scale=1.25, **args)
    return


class DistillMV3(nn.Layer):
    def __init__(
        self,
        scale=1.0,
        model_name="small",
        dropout_prob=0.2,
        class_dim=1000,
        args=None,
        use_custom_relu=False,
    ):
        super(DistillMV3, self).__init__()

        self.student = MobileNetV3(
            model_name=model_name,
            scale=scale,
            class_dim=class_dim,
            use_custom_relu=use_custom_relu,
        )

        self.student1 = MobileNetV3(
            model_name=model_name,
            scale=scale,
            class_dim=class_dim,
            use_custom_relu=use_custom_relu,
        )

    def forward(self, inputs, label=None):
        predicts = dict()
        predicts["student"] = self.student(inputs, label)
        predicts["student1"] = self.student1(inputs, label)
        return predicts


def distillmv3_large_x0_5(**args):
    model = DistillMV3(model_name="large", scale=0.5, **args)
    return model


class SiameseMV3(nn.Layer):
    def __init__(
        self,
        scale=1.0,
        model_name="small",
        dropout_prob=0.2,
        class_dim=1000,
        args=None,
        use_custom_relu=False,
    ):
        super(SiameseMV3, self).__init__()

        self.net = MobileNetV3(
            model_name=model_name,
            scale=scale,
            class_dim=class_dim,
            use_custom_relu=use_custom_relu,
        )
        self.net1 = MobileNetV3(
            model_name=model_name,
            scale=scale,
            class_dim=class_dim,
            use_custom_relu=use_custom_relu,
        )

    def forward(self, inputs, label=None):
        # net
        x = self.net.conv1(inputs)
        for block in self.net.block_list:
            x = block(x)

        # net1
        x1 = self.net1.conv1(inputs)
        for block in self.net1.block_list:
            x1 = block(x1)
        # add
        x = x + x1

        x = self.net.last_second_conv(x)
        x = self.net.pool(x)

        x = self.net.last_conv(x)
        x = hardswish(x)
        x = self.net.dropout(x)
        x = paddle.flatten(x, start_axis=1, stop_axis=-1)
        x = self.net.out(x)
        return x


def siamese_mv3(class_dim, use_custom_relu):
    model = SiameseMV3(
        scale=0.5,
        model_name="large",
        class_dim=class_dim,
        use_custom_relu=use_custom_relu,
    )
    return model


def build_model(config):
    model_type = config["model_type"]
    if model_type == "cls":
        class_dim = config["MODEL"]["class_dim"]
        use_custom_relu = config["MODEL"]["use_custom_relu"]
        if "siamese" in config["MODEL"] and config["MODEL"]["siamese"] is True:
            model = siamese_mv3(class_dim=class_dim, use_custom_relu=use_custom_relu)
        else:
            model = MobileNetV3_large_x0_5(
                class_dim=class_dim, use_custom_relu=use_custom_relu
            )

    elif model_type == "cls_distill":
        class_dim = config["MODEL"]["class_dim"]
        use_custom_relu = config["MODEL"]["use_custom_relu"]
        model = distillmv3_large_x0_5(
            class_dim=class_dim, use_custom_relu=use_custom_relu
        )

    elif model_type == "cls_distill_multiopt":
        class_dim = config["MODEL"]["class_dim"]
        use_custom_relu = config["MODEL"]["use_custom_relu"]
        model = distillmv3_large_x0_5(class_dim=100, use_custom_relu=use_custom_relu)
    else:
        raise ValueError("model_type should be one of ['']")

    return model