Testing PACT Quantization Implementation in PaddleOCR
This test suite validates quantization functionality in PaddleOCR’s slim module, focusing on the PACT (Parameterized Clipping Activation) implementation and quantization configuration testing. The tests ensure proper weight and activation quantization across different layer types with customizable parameters.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
paddlepaddle/paddleocr
test_tipc/supplementary/slim/slim_quant.py
import paddle
import numpy as np
import os
import paddle.nn as nn
import paddleslim
class PACT(paddle.nn.Layer):
def __init__(self):
super(PACT, self).__init__()
alpha_attr = paddle.ParamAttr(
name=self.full_name() + ".pact",
initializer=paddle.nn.initializer.Constant(value=20),
learning_rate=1.0,
regularizer=paddle.regularizer.L2Decay(2e-5),
)
self.alpha = self.create_parameter(shape=[1], attr=alpha_attr, dtype="float32")
def forward(self, x):
out_left = paddle.nn.functional.relu(x - self.alpha)
out_right = paddle.nn.functional.relu(-self.alpha - x)
x = x - out_left + out_right
return x
quant_config = {
# weight preprocess type, default is None and no preprocessing is performed.
"weight_preprocess_type": None,
# activation preprocess type, default is None and no preprocessing is performed.
"activation_preprocess_type": None,
# weight quantize type, default is 'channel_wise_abs_max'
"weight_quantize_type": "channel_wise_abs_max",
# activation quantize type, default is 'moving_average_abs_max'
"activation_quantize_type": "moving_average_abs_max",
# weight quantize bit num, default is 8
"weight_bits": 8,
# activation quantize bit num, default is 8
"activation_bits": 8,
# data type after quantization, such as 'uint8', 'int8', etc. default is 'int8'
"dtype": "int8",
# window size for 'range_abs_max' quantization. default is 10000
"window_size": 10000,
# The decay coefficient of moving average, default is 0.9
"moving_rate": 0.9,
# for dygraph quantization, layers of type in quantizable_layer_type will be quantized
"quantizable_layer_type": ["Conv2D", "Linear"],
}