Testing Hub Serving OCR Model Deployment in PaddleOCR
This test suite validates PaddleOCR’s Hub Serving functionality by testing the OCR model deployment and inference through HTTP requests. It includes comprehensive testing of image processing, OCR detection, recognition, and structure analysis capabilities.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
paddlepaddle/paddleocr
tools/test_hubserving.py
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, "..")))
from ppocr.utils.logging import get_logger
logger = get_logger()
import cv2
import numpy as np
import time
from PIL import Image
from ppocr.utils.utility import get_image_file_list
from tools.infer.utility import draw_ocr, draw_boxes, str2bool
from ppstructure.utility import draw_structure_result
from ppstructure.predict_system import to_excel
import requests
import json
import base64
def cv2_to_base64(image):
return base64.b64encode(image).decode("utf8")
def draw_server_result(image_file, res):
img = cv2.imread(image_file)
image = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
if len(res) == 0:
return np.array(image)
keys = res[0].keys()
if "text_region" not in keys: # for ocr_rec, draw function is invalid
logger.info("draw function is invalid for ocr_rec!")
return None
elif "text" not in keys: # for ocr_det
logger.info("draw text boxes only!")
boxes = []
for dno in range(len(res)):
boxes.append(res[dno]["text_region"])
boxes = np.array(boxes)
draw_img = draw_boxes(image, boxes)
return draw_img
else: # for ocr_system
logger.info("draw boxes and texts!")
boxes = []
texts = []
scores = []
for dno in range(len(res)):
boxes.append(res[dno]["text_region"])
texts.append(res[dno]["text"])
scores.append(res[dno]["confidence"])
boxes = np.array(boxes)
scores = np.array(scores)
draw_img = draw_ocr(image, boxes, texts, scores, draw_txt=True, drop_score=0.5)
return draw_img
def save_structure_res(res, save_folder, image_file):
img = cv2.imread(image_file)
excel_save_folder = os.path.join(save_folder, os.path.basename(image_file))
os.makedirs(excel_save_folder, exist_ok=True)
# save res
with open(os.path.join(excel_save_folder, "res.txt"), "w", encoding="utf8") as f:
for region in res:
if region["type"] == "Table":
excel_path = os.path.join(
excel_save_folder, "{}.xlsx".format(region["bbox"])
)
to_excel(region["res"], excel_path)
elif region["type"] == "Figure":
x1, y1, x2, y2 = region["bbox"]
print(region["bbox"])
roi_img = img[y1:y2, x1:x2, :]
img_path = os.path.join(
excel_save_folder, "{}.jpg".format(region["bbox"])
)
cv2.imwrite(img_path, roi_img)
else:
for text_result in region["res"]:
f.write("{}
".format(json.dumps(text_result)))
def main(args):
image_file_list = get_image_file_list(args.image_dir)
is_visualize = False
headers = {"Content-type": "application/json"}
cnt = 0
total_time = 0
for image_file in image_file_list:
img = open(image_file, "rb").read()
if img is None:
logger.info("error in loading image:{}".format(image_file))
continue
img_name = os.path.basename(image_file)
# seed http request
starttime = time.time()
data = {"images": [cv2_to_base64(img)]}
r = requests.post(url=args.server_url, headers=headers, data=json.dumps(data))
elapse = time.time() - starttime
total_time += elapse
logger.info("Predict time of %s: %.3fs" % (image_file, elapse))
res = r.json()["results"][0]
logger.info(res)
if args.visualize:
draw_img = None
if "structure_table" in args.server_url:
to_excel(res["html"], "./{}.xlsx".format(img_name))
elif "structure_system" in args.server_url:
save_structure_res(res["regions"], args.output, image_file)
else:
draw_img = draw_server_result(image_file, res)
if draw_img is not None:
if not os.path.exists(args.output):
os.makedirs(args.output)
cv2.imwrite(
os.path.join(args.output, os.path.basename(image_file)),
draw_img[:, :, ::-1],
)
logger.info(
"The visualized image saved in {}".format(
os.path.join(args.output, os.path.basename(image_file))
)
)
cnt += 1
if cnt % 100 == 0:
logger.info("{} processed".format(cnt))
logger.info("avg time cost: {}".format(float(total_time) / cnt))
def parse_args():
import argparse
parser = argparse.ArgumentParser(description="args for hub serving")
parser.add_argument("--server_url", type=str, required=True)
parser.add_argument("--image_dir", type=str, required=True)
parser.add_argument("--visualize", type=str2bool, default=False)
parser.add_argument("--output", type=str, default="./hubserving_result")
args = parser.parse_args()
return args
if __name__ == "__main__":
args = parse_args()
main(args)