Back to Repositories

Testing GFPGAN Face Restoration Components in TencentARC/GFPGAN

This test suite validates the GFPGAN face restoration functionality, focusing on model initialization and image enhancement capabilities. It ensures proper instantiation of different GFPGAN model architectures and verifies the image processing pipeline.

Test Coverage Overview

The test suite provides comprehensive coverage of GFPGAN’s core functionality:
  • Model initialization for both clean and original architectures
  • Face restoration helper integration verification
  • Image enhancement processing with different configurations
  • Output shape validation for various enhancement scenarios

Implementation Analysis

The testing approach employs pytest framework features for systematic validation of the GFPGANer class. It uses instance checking and shape assertions to verify proper model initialization and image processing results.

The tests follow a clear pattern of setup-execute-assert, first initializing the model with different configurations, then testing the enhance method with various parameters.

Technical Details

Key technical components include:
  • OpenCV (cv2) for image handling
  • FaceRestoreHelper from facexlib for face processing
  • GFPGANv1 and GFPGANv1Clean architecture implementations
  • Pytest for test execution and assertions
  • Predefined test image data in PNG format

Best Practices Demonstrated

The test suite exemplifies several testing best practices:
  • Separate test cases for different model architectures
  • Explicit verification of object instance types
  • Comprehensive output validation including shape checks
  • Testing of different parameter combinations
  • Clear separation of setup and assertion phases

tencentarc/gfpgan

tests/test_utils.py

            
import cv2
from facexlib.utils.face_restoration_helper import FaceRestoreHelper

from gfpgan.archs.gfpganv1_arch import GFPGANv1
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
from gfpgan.utils import GFPGANer


def test_gfpganer():
    # initialize with the clean model
    restorer = GFPGANer(
        model_path='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth',
        upscale=2,
        arch='clean',
        channel_multiplier=2,
        bg_upsampler=None)
    # test attribute
    assert isinstance(restorer.gfpgan, GFPGANv1Clean)
    assert isinstance(restorer.face_helper, FaceRestoreHelper)

    # initialize with the original model
    restorer = GFPGANer(
        model_path='experiments/pretrained_models/GFPGANv1.pth',
        upscale=2,
        arch='original',
        channel_multiplier=1,
        bg_upsampler=None)
    # test attribute
    assert isinstance(restorer.gfpgan, GFPGANv1)
    assert isinstance(restorer.face_helper, FaceRestoreHelper)

    # ------------------ test enhance ---------------- #
    img = cv2.imread('tests/data/gt/00000000.png', cv2.IMREAD_COLOR)
    result = restorer.enhance(img, has_aligned=False, paste_back=True)
    assert result[0][0].shape == (512, 512, 3)
    assert result[1][0].shape == (512, 512, 3)
    assert result[2].shape == (1024, 1024, 3)

    # with has_aligned=True
    result = restorer.enhance(img, has_aligned=True, paste_back=False)
    assert result[0][0].shape == (512, 512, 3)
    assert result[1][0].shape == (512, 512, 3)
    assert result[2] is None