Testing GFPGAN Face Restoration Components in TencentARC/GFPGAN
This test suite validates the GFPGAN face restoration functionality, focusing on model initialization and image enhancement capabilities. It ensures proper instantiation of different GFPGAN model architectures and verifies the image processing pipeline.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
tencentarc/gfpgan
tests/test_utils.py
import cv2
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
from gfpgan.archs.gfpganv1_arch import GFPGANv1
from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean
from gfpgan.utils import GFPGANer
def test_gfpganer():
# initialize with the clean model
restorer = GFPGANer(
model_path='experiments/pretrained_models/GFPGANCleanv1-NoCE-C2.pth',
upscale=2,
arch='clean',
channel_multiplier=2,
bg_upsampler=None)
# test attribute
assert isinstance(restorer.gfpgan, GFPGANv1Clean)
assert isinstance(restorer.face_helper, FaceRestoreHelper)
# initialize with the original model
restorer = GFPGANer(
model_path='experiments/pretrained_models/GFPGANv1.pth',
upscale=2,
arch='original',
channel_multiplier=1,
bg_upsampler=None)
# test attribute
assert isinstance(restorer.gfpgan, GFPGANv1)
assert isinstance(restorer.face_helper, FaceRestoreHelper)
# ------------------ test enhance ---------------- #
img = cv2.imread('tests/data/gt/00000000.png', cv2.IMREAD_COLOR)
result = restorer.enhance(img, has_aligned=False, paste_back=True)
assert result[0][0].shape == (512, 512, 3)
assert result[1][0].shape == (512, 512, 3)
assert result[2].shape == (1024, 1024, 3)
# with has_aligned=True
result = restorer.enhance(img, has_aligned=True, paste_back=False)
assert result[0][0].shape == (512, 512, 3)
assert result[1][0].shape == (512, 512, 3)
assert result[2] is None