Back to Repositories

Testing AES Cryptographic Operations in SmartTube

This test suite validates the AesFlushingCipher implementation in ExoPlayer, focusing on encryption and decryption operations with various data alignments and buffer sizes. The tests ensure robust cryptographic functionality for secure media streaming.

Test Coverage Overview

The test suite provides comprehensive coverage of AesFlushingCipher functionality, including:

  • Single block encryption/decryption verification
  • Aligned block operations with varying sizes
  • Unaligned data handling across block boundaries
  • Mid-stream decryption initialization
  • Data integrity verification after encryption/decryption cycles

Implementation Analysis

The testing approach employs JUnit with AndroidJUnit4 runner, utilizing systematic verification of cryptographic operations. The tests implement both block-aligned and unaligned data patterns, with random data generation for thorough validation. Each test verifies data integrity through byte-level comparison and enforces encryption strength through unchanged byte count analysis.

Technical Details

Key technical components include:

  • JUnit 4 testing framework with AndroidJUnit4 runner
  • Custom TestUtil for test data generation
  • AES encryption with 128-bit key support
  • Random data generation with controlled seeds
  • Byte-level verification utilities

Best Practices Demonstrated

The test suite exemplifies several testing best practices:

  • Proper test setup and teardown management
  • Comprehensive edge case coverage
  • Randomized input testing with controlled seeds
  • Explicit verification of cryptographic properties
  • Clean separation of test scenarios

yuliskov/smarttube

exoplayer-amzn-2.10.6/library/core/src/test/java/com/google/android/exoplayer2/upstream/crypto/AesFlushingCipherTest.java

            
/*
 * Copyright (C) 2016 The Android Open Source Project
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package com.google.android.exoplayer2.upstream.crypto;

import static com.google.common.truth.Truth.assertThat;

import androidx.test.ext.junit.runners.AndroidJUnit4;
import com.google.android.exoplayer2.testutil.TestUtil;
import com.google.android.exoplayer2.util.Util;
import java.util.Random;
import javax.crypto.Cipher;
import org.junit.After;
import org.junit.Before;
import org.junit.Test;
import org.junit.runner.RunWith;

/** Unit tests for {@link AesFlushingCipher}. */
@RunWith(AndroidJUnit4.class)
public class AesFlushingCipherTest {

  private static final int DATA_LENGTH = 65536;
  private static final byte[] KEY = Util.getUtf8Bytes("testKey:12345678");
  private static final long NONCE = 0;
  private static final long START_OFFSET = 11;
  private static final long RANDOM_SEED = 0x12345678;

  private AesFlushingCipher encryptCipher;
  private AesFlushingCipher decryptCipher;

  @Before
  public void setUp() {
    encryptCipher = new AesFlushingCipher(Cipher.ENCRYPT_MODE, KEY, NONCE, START_OFFSET);
    decryptCipher = new AesFlushingCipher(Cipher.DECRYPT_MODE, KEY, NONCE, START_OFFSET);
  }

  @After
  public void tearDown() {
    encryptCipher = null;
    decryptCipher = null;
  }

  private static long getMaxUnchangedBytesAllowedPostEncryption(long length) {
    // Assuming that not more than 10% of the resultant bytes should be identical.
    // The value of 10% is arbitrary, ciphers standards do not name a value.
    return length / 10;
  }

  // Count the number of bytes that do not match.
  private static int getDifferingByteCount(byte[] data1, byte[] data2, int startOffset) {
    int count = 0;
    for (int i = startOffset; i < data1.length; i++) {
      if (data1[i] != data2[i]) {
        count++;
      }
    }
    return count;
  }

  // Count the number of bytes that do not match.
  private static int getDifferingByteCount(byte[] data1, byte[] data2) {
    return getDifferingByteCount(data1, data2, 0);
  }

  // Test a single encrypt and decrypt call.
  @Test
  public void testSingle() {
    byte[] reference = TestUtil.buildTestData(DATA_LENGTH);
    byte[] data = reference.clone();

    encryptCipher.updateInPlace(data, 0, data.length);
    int unchangedByteCount = data.length - getDifferingByteCount(reference, data);
    assertThat(unchangedByteCount <= getMaxUnchangedBytesAllowedPostEncryption(data.length))
        .isTrue();

    decryptCipher.updateInPlace(data, 0, data.length);
    int differingByteCount = getDifferingByteCount(reference, data);
    assertThat(differingByteCount).isEqualTo(0);
  }

  // Test several encrypt and decrypt calls, each aligned on a 16 byte block size.
  @Test
  public void testAligned() {
    byte[] reference = TestUtil.buildTestData(DATA_LENGTH);
    byte[] data = reference.clone();
    Random random = new Random(RANDOM_SEED);

    int offset = 0;
    while (offset < data.length) {
      int bytes = (1 + random.nextInt(50)) * 16;
      bytes = Math.min(bytes, data.length - offset);
      assertThat(bytes % 16).isEqualTo(0);
      encryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
    }

    int unchangedByteCount = data.length - getDifferingByteCount(reference, data);
    assertThat(unchangedByteCount <= getMaxUnchangedBytesAllowedPostEncryption(data.length))
        .isTrue();

    offset = 0;
    while (offset < data.length) {
      int bytes = (1 + random.nextInt(50)) * 16;
      bytes = Math.min(bytes, data.length - offset);
      assertThat(bytes % 16).isEqualTo(0);
      decryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
    }

    int differingByteCount = getDifferingByteCount(reference, data);
    assertThat(differingByteCount).isEqualTo(0);
  }

  // Test several encrypt and decrypt calls, not aligned on block boundary.
  @Test
  public void testUnAligned() {
    byte[] reference = TestUtil.buildTestData(DATA_LENGTH);
    byte[] data = reference.clone();
    Random random = new Random(RANDOM_SEED);

    // Encrypt
    int offset = 0;
    while (offset < data.length) {
      int bytes = 1 + random.nextInt(4095);
      bytes = Math.min(bytes, data.length - offset);
      encryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
    }

    int unchangedByteCount = data.length - getDifferingByteCount(reference, data);
    assertThat(unchangedByteCount <= getMaxUnchangedBytesAllowedPostEncryption(data.length))
        .isTrue();

    offset = 0;
    while (offset < data.length) {
      int bytes = 1 + random.nextInt(4095);
      bytes = Math.min(bytes, data.length - offset);
      decryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
    }

    int differingByteCount = getDifferingByteCount(reference, data);
    assertThat(differingByteCount).isEqualTo(0);
  }

  // Test decryption starting from the middle of an encrypted block.
  @Test
  public void testMidJoin() {
    byte[] reference = TestUtil.buildTestData(DATA_LENGTH);
    byte[] data = reference.clone();
    Random random = new Random(RANDOM_SEED);

    // Encrypt
    int offset = 0;
    while (offset < data.length) {
      int bytes = 1 + random.nextInt(4095);
      bytes = Math.min(bytes, data.length - offset);
      encryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
    }

    // Verify
    int unchangedByteCount = data.length - getDifferingByteCount(reference, data);
    assertThat(unchangedByteCount <= getMaxUnchangedBytesAllowedPostEncryption(data.length))
        .isTrue();

    // Setup decryption from random location
    offset = random.nextInt(4096);
    decryptCipher = new AesFlushingCipher(Cipher.DECRYPT_MODE, KEY, NONCE, offset + START_OFFSET);
    int remainingLength = data.length - offset;
    int originalOffset = offset;

    // Decrypt
    while (remainingLength > 0) {
      int bytes = 1 + random.nextInt(4095);
      bytes = Math.min(bytes, remainingLength);
      decryptCipher.updateInPlace(data, offset, bytes);
      offset += bytes;
      remainingLength -= bytes;
    }

    // Verify
    int differingByteCount = getDifferingByteCount(reference, data, originalOffset);
    assertThat(differingByteCount).isEqualTo(0);
  }

}