Testing Llama Chat Model Integration in ruoyi-vue-pro
This test suite validates the integration of OllamaChatModel with Spring AI, focusing on both synchronous and streaming chat interactions. It demonstrates the implementation of a Llama-based chat model with custom system prompts and user messages.
Test Coverage Overview
Implementation Analysis
Technical Details
Best Practices Demonstrated
yunaiv/ruoyi-vue-pro
yudao-module-ai/yudao-spring-boot-starter-ai/src/test/java/cn/iocoder/yudao/framework/ai/chat/LlamaChatModelTests.java
package cn.iocoder.yudao.framework.ai.chat;
import org.junit.jupiter.api.Disabled;
import org.junit.jupiter.api.Test;
import org.springframework.ai.chat.messages.Message;
import org.springframework.ai.chat.messages.SystemMessage;
import org.springframework.ai.chat.messages.UserMessage;
import org.springframework.ai.chat.model.ChatResponse;
import org.springframework.ai.chat.prompt.Prompt;
import org.springframework.ai.ollama.OllamaChatModel;
import org.springframework.ai.ollama.api.OllamaApi;
import org.springframework.ai.ollama.api.OllamaModel;
import org.springframework.ai.ollama.api.OllamaOptions;
import reactor.core.publisher.Flux;
import java.util.ArrayList;
import java.util.List;
/**
* {@link OllamaChatModel} 集成测试
*
* @author 芋道源码
*/
public class LlamaChatModelTests {
private final OllamaApi ollamaApi = new OllamaApi(
"http://127.0.0.1:11434");
private final OllamaChatModel chatModel = new OllamaChatModel(ollamaApi,
OllamaOptions.create().withModel(OllamaModel.LLAMA3.getModelName()));
@Test
@Disabled
public void testCall() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = ?"));
// 调用
ChatResponse response = chatModel.call(new Prompt(messages));
// 打印结果
System.out.println(response);
System.out.println(response.getResult().getOutput());
}
@Test
@Disabled
public void testStream() {
// 准备参数
List<Message> messages = new ArrayList<>();
messages.add(new SystemMessage("你是一个优质的文言文作者,用文言文描述着各城市的人文风景。"));
messages.add(new UserMessage("1 + 1 = ?"));
// 调用
Flux<ChatResponse> flux = chatModel.stream(new Prompt(messages));
// 打印结果
flux.doOnNext(response -> {
// System.out.println(response);
System.out.println(response.getResult().getOutput());
}).then().block();
}
}