Back to Repositories

ColossalAI Testing: Distributed GPU Computing and Model Optimization Validation

The ColossalAI testing framework implements a comprehensive suite of unit tests using pytest, focusing on verifying critical distributed computing and model optimization functionalities. With 179 test cases, the framework thoroughly validates components like FP8 operations, bias additions, and distributed GPU communications, ensuring the reliability of ColossalAI's large-scale AI training capabilities. Qodo Tests Hub provides developers with detailed insights into ColossalAI's testing patterns, making it easier to understand how to implement robust tests for distributed AI systems. Through interactive exploration of real test implementations, developers can learn best practices for testing complex operations like model sharding, precision formats, and multi-GPU communications – essential knowledge for building reliable AI infrastructure.

Path Test Type Language Description
tests/test_fx/test_tracer/test_torchaudio_model/test_torchaudio_model.py
unit
python This PyTest unit test verifies TorchAudio model tracing and comparison functionality within the ColossalAI framework.
tests/test_fx/test_tracer/test_torchrec_model/test_dlrm_model.py
unit
python This PyTorch unit test verifies symbolic tracing functionality and output consistency for DLRM models in ColossalAI.
tests/test_fx/test_tracer/test_torchvision_model/test_torchvision_model.py
unit
python This PyTorch unit test verifies TorchVision model compatibility with Colossal-AI’s symbolic tracing functionality.
tests/test_infer/_utils.py
unit
python This Python unit test verifies ShardFormer model optimization and inference equivalence between original and sharded models in ColossalAI.
tests/test_infer/test_async_engine/test_async_engine.py
unit
python This pytest unit test verifies the asynchronous request handling and event processing capabilities of the AsyncInferenceEngine in ColossalAI.
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_default_reshape_handler.py
unit
python This PyTorch unit test verifies the DefaultReshapeHandler’s ability to manage reshape operations in distributed tensor computations.
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_conv_handler.py
unit
python This pytest unit test verifies the correct implementation of convolution handlers for distributed tensor operations in ColossalAI’s automatic parallelization system.
applications/ColossalChat/benchmarks/prepare_dummy_test_dataset.py
unit
python This Python unit test verifies dummy dataset generation and processing for various LLM training formats in ColossalAI.
tests/test_analyzer/test_subclasses/test_meta_mode.py
unit
python This PyTest unit test verifies tensor operation consistency between regular PyTorch tensors and meta tensors in the MetaTensorMode implementation.
tests/test_auto_parallel/test_tensor_shard/test_node_handler/test_batch_norm_handler.py
unit
python This PyTest unit test verifies BatchNorm module handling and sharding strategies in distributed tensor operations for ColossalAI’s auto-parallel system.