Back to Repositories

ColossalAI Testing: Distributed GPU Computing and Model Optimization Validation

The ColossalAI testing framework implements a comprehensive suite of unit tests using pytest, focusing on verifying critical distributed computing and model optimization functionalities. With 179 test cases, the framework thoroughly validates components like FP8 operations, bias additions, and distributed GPU communications, ensuring the reliability of ColossalAI's large-scale AI training capabilities. Qodo Tests Hub provides developers with detailed insights into ColossalAI's testing patterns, making it easier to understand how to implement robust tests for distributed AI systems. Through interactive exploration of real test implementations, developers can learn best practices for testing complex operations like model sharding, precision formats, and multi-GPU communications – essential knowledge for building reliable AI infrastructure.

Path Test Type Language Description
tests/test_analyzer/test_fx/test_nested_ckpt.py
unit
python This pytest unit test verifies nested checkpoint tracing functionality in PyTorch models using ColossalAI’s symbolic tracing system.
examples/tutorial/auto_parallel/auto_ckpt_batchsize_test.py
unit
python This PyTorch unit test verifies automatic activation checkpointing optimization with varying batch sizes in ResNet152 model training.
tests/test_auto_parallel/test_offload/model_utils.py
unit
python This PyTorch unit test verifies BERT and GPT-2 model utilities for auto-parallel and offloading scenarios in ColossalAI.
tests/test_autochunk/test_autochunk_vit/test_autochunk_vit_utils.py
unit
python This PyTorch unit test verifies automatic memory-optimized chunking functionality for Vision Transformer models in ColossalAI.
tests/test_auto_parallel/test_offload/test_solver.py
unit
python This pytest unit test verifies memory management solver functionality for model offloading in ColossalAI’s auto-parallel system.
tests/test_auto_parallel/test_pass/test_size_value_converting_pass.py
unit
python This pytest unit test verifies size value conversion functionality in distributed tensor operations with device mesh configurations.
tests/test_auto_parallel/test_tensor_shard/test_metainfo/test_embedding_metainfo.py
unit
python This pytest unit test verifies embedding layer meta-information and memory profiling accuracy in PyTorch operations.
tests/test_auto_parallel/test_tensor_shard/test_checkpoint.py
unit
python This PyTest unit test verifies checkpoint functionality in distributed GPT-2 MLP training using ColossalAI’s auto-parallel tensor sharding system.
tests/test_auto_parallel/test_tensor_shard/test_find_repeat_block.py
unit
python This PyTorch unit test verifies the identification and analysis of repeated neural network blocks in tensor sharding implementations.
tests/test_auto_parallel/test_tensor_shard/test_gpt/test_solver_with_gpt_module.py
unit
python This PyTorch unit test verifies tensor sharding optimization strategies for GPT2 model components in automated parallel processing scenarios.